Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Grosse-Klönne, Elmar
2014.
On special representations of p-adic reductive groups.
Duke Mathematical Journal,
Vol. 163,
Issue. 12,
Ollivier, Rachel
2014.
Compatibility between Satake and Bernstein isomorphisms in characteristicp.
Algebra & Number Theory,
Vol. 8,
Issue. 5,
p.
1071.
Breuil, Christophe
2015.
Induction parabolique et (φ,Γ)-modules.
Algebra & Number Theory,
Vol. 9,
Issue. 10,
p.
2241.
Breuil, Christophe
and
Herzig, Florian
2015.
Ordinary representations of G ( Q p ) and fundamental algebraic representations.
Duke Mathematical Journal,
Vol. 164,
Issue. 7,
Abe, N.
Henniart, G.
Herzig, F.
and
Vignéras, M.-F.
2016.
A classification of irreducible admissible mod 𝑝 representations of 𝑝-adic reductive groups.
Journal of the American Mathematical Society,
Vol. 30,
Issue. 2,
p.
495.
Gao, Hui
and
Sorensen, Claus
2016.
Locally algebraic vectors in the Breuil–Herzig ordinary part.
manuscripta mathematica,
Vol. 151,
Issue. 1-2,
p.
113.
Hauseux, Julien
2018.
Parabolic induction and extensions.
Algebra & Number Theory,
Vol. 12,
Issue. 4,
p.
779.
Ollivier, Rachel
and
Vignéras, Marie-France
2018.
Parabolic induction in characteristic p.
Selecta Mathematica,
Vol. 24,
Issue. 5,
p.
3973.
Kozioł, Karol
and
Peskin, Laura
2018.
Irreducible admissible mod-p representations of metaplectic groups.
manuscripta mathematica,
Vol. 155,
Issue. 3-4,
p.
539.
Xu, Peng
2019.
Freeness of spherical Hecke modules of unramified U(2,1) in characteristic p.
Journal of Number Theory,
Vol. 195,
Issue. ,
p.
293.
Abe, Noriyuki
2019.
Modulo p parabolic induction of pro-p-Iwahori Hecke algebra.
Journal für die reine und angewandte Mathematik (Crelles Journal),
Vol. 2019,
Issue. 749,
p.
1.
Hauseux, Julien
2019.
Sur une conjecture de Breuil–Herzig.
Journal für die reine und angewandte Mathematik (Crelles Journal),
Vol. 2019,
Issue. 751,
p.
91.
Abe, N.
Herzig, F.
and
Vignéras, M. F.
2022.
Inverse Satake isomorphism and change of weight.
Representation Theory of the American Mathematical Society,
Vol. 26,
Issue. 9,
p.
264.