Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T23:07:20.511Z Has data issue: false hasContentIssue false

Matching of orbital integrals (transfer) and Roche Hecke algebra isomorphisms

Part of: Lie groups

Published online by Cambridge University Press:  21 January 2020

Bertrand Lemaire
Affiliation:
Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 163 Avenue de Luminy, Case 901, 13288Marseille, France email Bertrand.Lemaire@univ-amu.fr
Manish Mishra
Affiliation:
Department of Mathematics, Indian Institute of Science Education and Research (IISER), Pune, India email manish@iiserpune.ac.in

Abstract

Let $F$ be a non-Archimedean local field, $G$ a connected reductive group defined and split over $F$, and $T$ a maximal $F$-split torus in $G$. Let $\unicode[STIX]{x1D712}_{0}$ be a depth-zero character of the maximal compact subgroup $T$ of $T(F)$. This gives by inflation a character $\unicode[STIX]{x1D70C}$ of an Iwahori subgroup $\unicode[STIX]{x2110}\subset T$ of $G(F)$. From Roche [Types and Hecke algebras for principal series representations of split reductive$p$-adic groups, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 361–413], $\unicode[STIX]{x1D712}_{0}$ defines a reductive $F$-split group $\widetilde{G}^{\prime }$ whose connected component $G^{\prime }$ is an endoscopic group of $G$, and there is an isomorphism of $\mathbb{C}$-algebras $\unicode[STIX]{x210B}(G(F),\unicode[STIX]{x1D70C})\rightarrow \unicode[STIX]{x210B}(\widetilde{G}^{\prime }(F),1_{\unicode[STIX]{x2110}^{\prime }})$ where $\unicode[STIX]{x210B}(G(F),\unicode[STIX]{x1D70C})$ is the Hecke algebra of compactly supported $\unicode[STIX]{x1D70C}^{-1}$-spherical functions on $G(F)$ and $\unicode[STIX]{x2110}^{\prime }$ is an Iwahori subgroup of $G^{\prime }(F)$. This isomorphism gives by restriction an injective morphism $\unicode[STIX]{x1D701}:Z(G(F),\unicode[STIX]{x1D70C})\rightarrow Z(G^{\prime }(F),1_{\unicode[STIX]{x2110}^{\prime }})$ between the centers of the Hecke algebras. We prove here that a certain linear combination of morphisms analogous to $\unicode[STIX]{x1D701}$ realizes the transfer (matching of strongly $G$-regular semi-simple orbital integrals). If $\operatorname{char}(F)=p>0$, our result is unconditional only if $p$ is large enough.

Type
Research Article
Copyright
© The Authors 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors acknowledge partial support by the Agence Nationale de la Recherche, project ANR–13–BS01–00120–02 FERPLAY.

References

Arthur, J., On local character relations, Selecta Math. (N.S.) 2 (1996), 501579.CrossRefGoogle Scholar
Barbasch, D. and Moy, A., A new proof of the Howe conjecture, J. Amer. Math. Soc. 13 (2000), 639650.CrossRefGoogle Scholar
Chernousov, V., The Hasse principle for groups of type E 8, Sov. Math. Dokl. 39 (1989), 592596.Google Scholar
Clozel, C., The fundamental lemma for stable base change, Duke Math. J. 61 (1990), 255302.CrossRefGoogle Scholar
Gaitsgory, D. and Lurie, J., Weils conjecture for function fields: Volume I, Annals of Mathematics Studies, vol. 199 (Princeton University Press, Princeton, NJ, 2019).Google Scholar
Gordon, J. and Hales, T., Endoscopic transfer of orbital integrals in large residual characteristic, Amer. J. Math. 138 (2016), 109148.CrossRefGoogle Scholar
Haines, T., Base change fundamental lemma for central elements in parahoric Hecke algebras, Duke Math. J. 149 (2009), 569643.CrossRefGoogle Scholar
Haines, T., Base change for Bernstein centers of depth zero principal series blocks, Ann. Sci. Éc. Norm. Supér. (4) 45 (2013), 681718.CrossRefGoogle Scholar
Haines, T. and Rapoport, M., Shimura varieties with 𝛤1(p)-level via Hecke algebra isomorphisms: the Drinfeld case, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 719785.CrossRefGoogle Scholar
Hales, T., On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math. 45 (1995), 974994.CrossRefGoogle Scholar
Harder, G., Halbeinfache Gruppenschemata über Dedekindringen, Invent. Math. 4 (1967), 165171.CrossRefGoogle Scholar
Harder, G., Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III, J. Reine Angew. Math. 274/275 (1975), 125138.Google Scholar
Henniart, G., La conjecture de Langlands pour GL(3), Mémoire Soc. Math. Fr. (N.S.) 11–12 (1983), 1186.Google Scholar
Howlett, R. and Lehrer, G., Induced cuspidal representations and generalized Hecke rings, Invent. Math. 58 (1980), 3764.CrossRefGoogle Scholar
Kazhdan, D. and Varshavsky, Y., On endoscopic transfer of Deligne–Lusztig functions, Duke Math. J. 161 (2012), 675732.CrossRefGoogle Scholar
Kottwitz, R., Stable trace formula: elliptic singular terms, Math. Ann 275 (1986), 365399.CrossRefGoogle Scholar
Kottwitz, R., Tamagawa numbers, Ann. of Math. (2) 127 (1988), 629646.CrossRefGoogle Scholar
Kottwitz, R. and Shelstad, D., Foundations of twisted endoscopy, Astérisque 255 (1999), 1190.Google Scholar
Labesse, J.-P., Fonctions élémentaires et lemme fondamental pour le changement de base, Duke Math. J. 61 (1990), 519530.CrossRefGoogle Scholar
Labesse, J.-P., Noninvariant base change identities, Mém. Soc. Math. Fr. (N.S.) 61 (1995), 1113.Google Scholar
Labesse, J.-P., Cohomology, stabilisation et changement de base, Astérisque 255 (1999) (with an Appendix A by L. Clozel and J.-P. Labesse, and an Appendix B by L. Breen).Google Scholar
Labesse, J.-P., Nombres de Tamagawa des groupes réductifs quasi-connexes, Manuscripta Math. 104 (2001), 407430.CrossRefGoogle Scholar
Labesse, J.-P., Stable twisted trace formule: the elliptic terms, J. Inst. Math. Jussieu 3 (2004), 473530.CrossRefGoogle Scholar
Labesse, J.-P. and Lemaire, B., On abelianized cohomology for reductive groups, J. Number Theory 146 (2015), 448505; appendix to A conjecture on Whittaker–Fourier coefficients on cusp forms by E. Lapid and Z. Mao.Google Scholar
Langlands, R., Les débuts d’une formule des traces stables, Publ. Math. Univ. Paris VII 13 (1983).Google Scholar
Lemaire, B., Intégrales orbitales tordues sur GL(n, F) et corps locaux proches: applications, Canad. J. Math. 58 (2006), 11291267.Google Scholar
Lemaire, B. and Waldspurger, J.-L., Données endoscopiques d’un groupe réductif connexe: applications d’une construction de Langlands. Preprint (2019), arXiv:1911.03309.Google Scholar
MacDonald, I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157 (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
Milne, J. and Shih, K.-J., Conjugates of Shimura varieties, in Hodge cycles, Motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, eds Deligne, P., Milne, J., Ogus., A. and Shih, K.-Y. (Springer, Heidelberg, 1982), 280356.CrossRefGoogle Scholar
Mœglin, C. and Waldspurger, J.-L., Stabilisation de la formule des traces tordues, Vol. 1, Progress in Mathematics, vol. 316 (Birkhäuser, 2016).Google Scholar
Morris, L., Tamely ramified intertwining algebras, Invent. Math. 114 (1993), 154.CrossRefGoogle Scholar
Ngô, B. C., Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Études Sci. 111 (2010), 1169.CrossRefGoogle Scholar
Roche, A., Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 361413.CrossRefGoogle Scholar
Waldspurger, J.-L., Le lemme fondamental implique le transfert, Compos. Math. 105 (1997), 153236.CrossRefGoogle Scholar
Waldspurger, J.-L., Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu 45 (2006), 423525.CrossRefGoogle Scholar