Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T02:14:00.879Z Has data issue: false hasContentIssue false

Frobenius categories, Gorenstein algebras and rational surface singularities

Published online by Cambridge University Press:  28 October 2014

Martin Kalck
Affiliation:
The Maxwell Institute, School of Mathematics, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK email m.kalck@ed.ac.uk
Osamu Iyama
Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan email iyama@math.nagoya-u.ac.jp
Michael Wemyss
Affiliation:
The Maxwell Institute, School of Mathematics, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK email wemyss.m@googlemail.com
Dong Yang
Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, PR China email dongyang2002@gmail.com

Abstract

We give sufficient conditions for a Frobenius category to be equivalent to the category of Gorenstein projective modules over an Iwanaga–Gorenstein ring. We then apply this result to the Frobenius category of special Cohen–Macaulay modules over a rational surface singularity, where we show that the associated stable category is triangle equivalent to the singularity category of a certain discrepant partial resolution of the given rational singularity. In particular, this produces uncountably many Iwanaga–Gorenstein rings of finite Gorenstein projective type. We also apply our method to representation theory, obtaining Auslander–Solberg and Kong type results.

Type
Research Article
Copyright
© The Author(s) 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiot, C., Iyama, O. and Reiten, I., Stable categories of Cohen–Macaulay modules and cluster categories, Preprint (2011), arXiv:1104.3658.Google Scholar
Artin, M., On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129136.Google Scholar
Auslander, M., Coherent functors, in Proc. Conf. Categorical Algebra (La Jolla, CA, 1965) (Springer, New York, 1966), 189231.Google Scholar
Auslander, M., Functors and morphisms determined by objects, in Representation theory of algebras (Proc. Conf. Temple Univ., Philadelphia, PA, 1976), Lecture Notes in Pure and Applied Mathematics, vol. 37 (Dekker, New York, 1978), 1244.Google Scholar
Auslander, M., Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), 511531.CrossRefGoogle Scholar
Auslander, M. and Bridger, M., Stable module theory, Memoirs of the American Mathematical Society, vol. 94 (American Mathematical Society, Providence, RI, 1969).Google Scholar
Auslander, M. and Goldman, O., Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 124.Google Scholar
Auslander, M. and Solberg, O., Gorenstein algebras and algebras with dominant dimension at least 2, Comm. Algebra 21 (1993), 38973934.Google Scholar
Auslander, M. and Solberg, O., Relative homology and representation theory. I. Relative homology and homologically finite subcategories, Comm. Algebra 21 (1993), 29953031.Google Scholar
Bridgeland, T., King, A. and Reid, M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535554.Google Scholar
Buan, A. B., Iyama, O., Reiten, I. and Scott, J., Cluster structures for 2-Calabi–Yau categories and unipotent groups, Compositio Math. 145 (2009), 10351079.CrossRefGoogle Scholar
Buchweitz, R.-O., Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, Preprint (1986).Google Scholar
Buchweitz, R.-O. and Hille, L., Hochschild (co-)homology of schemes with tilting object, Trans. Amer. Math. Soc. 365 (2013), 28232844.Google Scholar
Burban, I. and Kalck, M., Relative singularity category of a non-commutative resolution of singularities, Adv. Math. 231 (2012), 414435.Google Scholar
Chen, X.-W., Three results on Frobenius categories, Math. Z. 270 (2012), 4358.Google Scholar
Craw, A., The special McKay correspondence as an equivalence of derived categories, Q. J. Math. 62 (2011), 573591.CrossRefGoogle Scholar
Dräxler, P., Reiten, I., Smalø, S. O. and Solberg, Ø., Exact categories and vector space categories, With an appendix by B. Keller, Trans. Amer. Math. Soc. 351 (1999), 647682.Google Scholar
Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 3564.Google Scholar
Enochs, E. and Jenda, O., Relative homological algebra, de Gruyter Expositions in Mathematics, vol. 30 (Walter de Gruyter & Co., Berlin, 2000).CrossRefGoogle Scholar
Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323448.CrossRefGoogle Scholar
Geiss, C., Leclerc, B. and Schröer, J., Cluster algebra structures and semicanonical bases for unipotent groups, Preprint (2007), arXiv:0703039v4.Google Scholar
Ginzburg, V., Calabi–Yau algebras, Preprint (2006), arXiv:math/0612139.Google Scholar
Goto, S. and Nishida, K., Finite modules of finite injective dimension over a Noetherian algebra, J. Lond. Math. Soc. (2) 63 (2001), 319335.Google Scholar
Grauert, H., Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331368.Google Scholar
Happel, D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119 (Cambridge University Press, Cambridge, 1988).Google Scholar
Ishii, A. and Ueda, K., Dimer models and exceptional collections, Preprint (2009),arXiv:0911.4529.Google Scholar
Iyama, O. and Reiten, I., Fomin–Zelevinsky mutation and tilting modules over Calabi–Yau algebras, Amer. J. Math. 130 (2008), 10871149.Google Scholar
Iyama, O. and Wemyss, M., The classification of special Cohen–Macaulay modules, Math. Z. 265 (2010), 4183.Google Scholar
Iyama, O. and Wemyss, M., A new triangulated category for rational surface singularities, Illinois J. Math. 55 (2011), 325341.Google Scholar
Iyama, O. and Wemyss, M., Singular derived categories of ℚ-factorial terminalizations and maximal modification algebras, Adv. Math. 261 (2014), 85121.Google Scholar
Kalck, M., Relative singularity categories, PhD thesis, Universität Bonn (2013), urn:nbn:de:hbz:5n-34275, available at http://hss.ulb.uni-bonn.de/2013/3427/3427.htm.Google Scholar
Kalck, M. and Yang, D., Relative singularity categories I: Auslander resolutions, Preprint (2012), arXiv:1205.1008v3.Google Scholar
Kapranov, M. and Vasserot, E., Kleinian singularities, derived categories and Hall algebras, Math. Ann. 316 (2000), 565576.CrossRefGoogle Scholar
Keller, B., Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379417.Google Scholar
Keller, B., Derived categories and their uses, inHandbook of Algebra, Vol. 1, 671701. (North-Holland, Amsterdam, 1996).Google Scholar
Keller, B. and Vossieck, D., Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 225228.Google Scholar
Kong, F., Generalization of the correspondence about DTr-selfinjective algebras, Preprint (2012), arXiv:1204.0967.Google Scholar
Laufer, H., Taut two-dimensional singularities, Math. Ann. 205 (1973), 131164.Google Scholar
McConnell, J. C. and Robson, J. C., Noncommutative Noetherian rings (John Wiley & Sons, Chichester, 1987).Google Scholar
Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), 205236.CrossRefGoogle Scholar
Orlov, D., Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math. 246 (2004), 227248.Google Scholar
Orlov, D., Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011), 206217.Google Scholar
Reid, M., Chapters on algebraic surfaces, in Complex algebraic varieties, IAS/Park City Lecture Notes Series, vol. 1993, ed. Kollár, J. (American Mathematical Society, Providence, RI, 1997), 1154.Google Scholar
Reiten, I. and Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), 295366.Google Scholar
Riemenschneider, O., Die Invarianten der endlichen Untergruppen von GL(2, ℂ), Math. Z. 153 (1977), 3750.Google Scholar
Riemenschneider, O., Röhr, A. and Wahl, J. M., A vanishing theorem concerning the Artin component of a rational surface singularity, Math. Ann. 286 (1990), 529535.Google Scholar
Stafford, J. T. and Van den Bergh, M., Noncommutative resolutions and rational singularities, Michigan Math. J. 57 (2008), 659674.CrossRefGoogle Scholar
Tráng, L. D. and Tosun, M., Combinatorics of rational singularities, Comment. Math. Helv. 79 (2004), 582604.Google Scholar
van den Bergh, M., Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), 423455.Google Scholar
van den Bergh, M., Non-commutative crepant resolutions, in The legacy of Niels Henrik Abel (Springer, Berlin, 2004), 749770.Google Scholar
Wemyss, M., The GL(2, ℂ) McKay correspondence, Math. Ann. 350 (2011), 631659.Google Scholar
Wemyss, M., Reconstruction Algebras of Type A, Trans. Amer. Math. Soc. 363 (2011), 31013132.Google Scholar
Wunram, J., Reflexive modules on cyclic quotient surface singularities, in Singularities, representation of algebras, and vector bundles, Lecture Notes in Mathematics, vol. 1273 (Springer, Berlin, 1987), 221231.Google Scholar
Wunram, J., Reflexive modules on quotient surface singularities, Math. Ann. 279 (1988), 583598.Google Scholar