Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:16:25.622Z Has data issue: false hasContentIssue false

Equidistribution of Hodge loci II

Published online by Cambridge University Press:  12 January 2023

Salim Tayou
Affiliation:
Department of Mathematics, Harvard University, 1 Oxford St, Cambridge, MA 02138, USA tayou@math.harvard.edu
Nicolas Tholozan
Affiliation:
DMA – UMR8553, École Normale Supérieure, CNRS – PSL Research University, 45 rue d'Ulm, 75230, Paris Cedex 5, France nicolas.tholozan@ens.fr

Abstract

Let $\mathbb {V}$ be a polarized variation of Hodge structure over a smooth complex quasi-projective variety $S$. In this paper, we give a complete description of the typical Hodge locus for such variations. We prove that it is either empty or equidistributed with respect to a natural differential form, the pull–push form. In particular, it is always analytically dense when the pull–push form does not vanish. When the weight is two, the Hodge numbers are $(q,p,q)$ and the dimension of $S$ is least $rq$, we prove that the typical locus where the Picard rank is at least $r$ is equidistributed in $S$ with respect to the volume form $c_q^r$, where $c_q$ is the $q$th Chern form of the Hodge bundle. We obtain also several equidistribution results of the typical locus in Shimura varieties: a criterion for the density of the typical Hodge loci of a variety in $\mathcal {A}_g$, equidistribution of certain families of CM points and equidistribution of Hecke translates of curves and surfaces in $\mathcal {A}_g$. These results are proved in the much broader context of dynamics on homogeneous spaces of Lie groups which are of independent interest. The pull–push form appears in this greater generality, we provide several tools to determine it, and we compute it in many examples.

Type
Research Article
Copyright
© 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakker, B., Brunebarbe, Y. and Tsimerman, J., o-minimal GAGA and a conjecture of Griffiths, Preprint (2018), arXiv:1811.12230.Google Scholar
Bakker, B., Klingler, B. and Tsimerman, J., Tame topology of arithmetic quotients and algebraicity of Hodge loci, J. Amer. Math. Soc. 33 (2020), 917939.CrossRefGoogle Scholar
Baldi, G., Klingler, B. and Ullmo, E., On the distribution of the Hodge locus, Preprint (2021), arXiv:2107.08838.Google Scholar
Benoist, Y., Réseaux des groupes de lie. Lecture notes, 2008, https://www.imo.universite-paris-saclay.fr/benoist/prepubli/08m2p6ch1a13.pdf.Google Scholar
Borel, A., Linear algebraic groups, Graduate Texts in Mathematics, vol. 126, second edition (Springer, New York, 1991).CrossRefGoogle Scholar
Borel, A. and Harish-Chandra, , Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485535.CrossRefGoogle Scholar
Bott, R. and Tu, L. W., Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82 (Springer, New York, Berlin, 1982).CrossRefGoogle Scholar
Carlson, J. A., Bounds on the dimension of variations of Hodge structure, Trans. Amer. Math. Soc. 294 (1986), 4564.CrossRefGoogle Scholar
Cartan, E. J., Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces, Annales de la Société Polonaise de Mathématique (1930).Google Scholar
Cattani, E., Deligne, P. and Kaplan, A., On the locus of Hodge classes, J. Amer. Math. Soc. 8 (1995), 483506.CrossRefGoogle Scholar
Charles, F., Exceptional isogenies between reductions of pairs of elliptic curves, Duke Math. J. 167 (2018), 20392072.CrossRefGoogle Scholar
Clozel, L., Oh, H. and Ullmo, E., Hecke operators and equidistribution of Hecke points, Invent. Math. 144 (2001), 327351.CrossRefGoogle Scholar
Clozel, L. and Ullmo, E., Équidistribution des points de Hecke, in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, MD, 2004), 193254.Google Scholar
Dani, S. G. and Margulis, G. A., Limit distributions of orbits of unipotent flows and values of quadratic forms, in I. M. Gelfand Seminar. Part 1: Papers of the Gelfand seminar in functional analysis held at Moscow University, Russia, September 1993 (American Mathematical Society, Providence, RI, 1993), 91137.CrossRefGoogle Scholar
Deligne, P., Travaux de Shimura, in Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Lecture Notes in Mathematics, vol. 244 (Springer, 1971), 123165.CrossRefGoogle Scholar
Deligne, P., Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, in Automorphic forms, representations and L-functions, Part 2, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 247289.CrossRefGoogle Scholar
Donagi, R., Generic torelli for projective hypersurfaces, Compos. Math. 50 (1983), 325353.Google Scholar
Duke, W., Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), 7390.CrossRefGoogle Scholar
Eskin, A. and Katznelson, Y. R., Singular symmetric matrices, Duke Math. J. 79 (1995), 515547.CrossRefGoogle Scholar
Eskin, A. and Oh, H., Ergodic theoretic proof of equidistribution of Hecke points, Ergodic Theory Dynam. Systems 26 (2006), 163167.CrossRefGoogle Scholar
Eskin, A. and Oh, H., Representations of integers by an invariant polynomial and unipotent flows, Duke Math. J. 135 (2006), 481506.CrossRefGoogle Scholar
Gabrièlov, A. M., Projections of semianalytic sets, Funktsional. Anal. i Prilozhen. 2 (1968), 1830.CrossRefGoogle Scholar
Garcia, L. E., Superconnections, theta series, and period domains, Adv. Math. 329 (2018), 555589.CrossRefGoogle Scholar
Green, M., Griffiths, P. and Kerr, M., Mumford–Tate domains, Boll. Unione Mat. Ital. (9) 3 (2010), 281307.Google Scholar
Green, M., Griffiths, P. and Kerr, M., Mumford–Tate groups and domains: Their geometry and arithmetic, Annals of Mathematics Studies, vol. 183 (Princeton University Press, Princeton, NJ, 2012).Google Scholar
Griffiths, P. and Harris, J., Principles of algebraic geometry, second edition (Wiley, New York, NY, 1994).CrossRefGoogle Scholar
Huybrechts, D., Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158 (Cambridge University Press, Cambridge, 2016).CrossRefGoogle Scholar
Keel, S. and Sadun, L., Oort's conjecture for $A_g\otimes \mathbb {C}$, J. Amer. Math. Soc. 16 (2003), 887900.CrossRefGoogle Scholar
Kempf, G. and Laksov, D., The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153162.CrossRefGoogle Scholar
Khayutin, I., Joint equidistribution of CM points, Ann. of Math. (2) 189 (2019), 145276.CrossRefGoogle Scholar
Kitaoka, Y., Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106 (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
Klingler, B. and Otwinowska, A., On the closure of the Hodge locus of positive period dimension, Invent. Math. 225 (2021), 857883.CrossRefGoogle Scholar
Kudla, S. S. and Millson, J. J., Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables, Publ. Math. Inst. Hautes Études Sci. 71 (1990), 121172.CrossRefGoogle Scholar
Lubotzky, A. and Segal, D., Subgroup growth, vol. 212 (Birkhäuser, Basel, 2003).CrossRefGoogle Scholar
Maulik, D., Shankar, A. N. and Tang, Y., Picard ranks of K3 surfaces over function fields and the Hecke orbit conjecture, Invent. Math. 228 (2022), 10751143.CrossRefGoogle Scholar
Maulik, D., Shankar, A. N. and Tang, Y., Reductions of abelian surfaces over global function fields, Compos. Math. 158 (2022), 893950.CrossRefGoogle Scholar
Mozes, S. and Shah, N., On the space of ergodic invariant measures for unipotent flows, Ergodic Theory Dyn. Syst. 15 (1995), 149159.CrossRefGoogle Scholar
Mumford, D., Hirzebruch's proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239272.CrossRefGoogle Scholar
Oort, F. and Steenbrink, J., The local Torelli problem for algebraic curves, J. Géométrie Algébrique d'Angers (1980), 157–204.Google Scholar
Shankar, A. N., Shankar, A., Tang, Y. and Tayou, S., Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields, Forum Math. Pi 10 (2022), e21.CrossRefGoogle Scholar
Shankar, A. N. and Tang, Y., Exceptional splitting of reductions of abelian surfaces, Duke Math. J. 169 (2020), 397434.CrossRefGoogle Scholar
Tayou, S., On the equidistribution of some hodge loci, J. Reine Angew. Math. 2020 (2020), 167194.CrossRefGoogle Scholar
Tayou, S., Picard rank jumps for K3 surfaces with bad reduction, Preprint (2022), arXiv:2203.09559.Google Scholar
Tholozan, N., Volume and non-existence of compact Clifford-Klein forms, Preprint (2015), arXiv:1511.09448.Google Scholar
van den Dries, L. P. D., Tame Topology and O-minimal Structures, London Mathematical Society Lecture Note Series, vol. 248 (Cambridge University Press, 1998).Google Scholar
van den Dries, L. and Miller, C., On the real exponential field with restricted analytic functions, Israel J. Math. 85 (1994), 1956.CrossRefGoogle Scholar
van den Dries, L. and Miller, C., Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497540.CrossRefGoogle Scholar
van der Geer, G., Cycles on the moduli space of abelian varieties, in Moduli of curves and abelian varieties. The Dutch intercity seminar on moduli (Vieweg, Braunschweig, 1999), 6589.CrossRefGoogle Scholar
Voisin, C., Théorie de Hodge et géométrie algébrique complexe, in Cours Spécialisés, vol. 10 (Société Mathématique de France, 2002).Google Scholar
Weil, A., Sur la théorie des formes quadratiques, in Colloque sur la théorie des groupes algébriques (Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962), 922.Google Scholar
Wilkie, A. J., Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 10511094.CrossRefGoogle Scholar
Yafaev, A., Special points and intersections in Abelian and Shimura varieties, in Around the Zilber–Pink conjecture/Autour de la conjecture de Zilber–Pink, Panoramas et Synthèses, vol. 52 (Société Mathématique de France, 2017), 89110.Google Scholar
Zhang, S.-W., Equidistribution of CM-points on quaternion Shimura varieties, Int. Math. Res. Not. IMRN 59 (2005), 36573689.Google Scholar