Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T11:06:00.738Z Has data issue: false hasContentIssue false

Automorphic products of singular weight

Published online by Cambridge University Press:  20 June 2017

Nils R. Scheithauer*
Affiliation:
Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany email scheithauer@mathematik.tu-darmstadt.de

Abstract

We prove some new structure results for automorphic products of singular weight. First, we give a simple characterisation of the Borcherds function $\unicode[STIX]{x1D6F7}_{12}$. Second, we show that holomorphic automorphic products of singular weight on lattices of prime level exist only in small signatures and we derive an explicit bound. Finally, we give a complete classification of reflective automorphic products of singular weight on lattices of prime level.

Type
Research Article
Copyright
© The Author 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borcherds, R. E., The monster Lie algebra , Adv. Math. 83 (1990), 3047.CrossRefGoogle Scholar
Borcherds, R. E., Automorphic forms on O s+2, 2(R) and infinite products , Invent. Math. 120 (1995), 161213.CrossRefGoogle Scholar
Borcherds, R. E., Automorphic forms with singularities on Grassmannians , Invent. Math. 132 (1998), 491562.CrossRefGoogle Scholar
Borcherds, R. E., The Gross–Kohnen–Zagier theorem in higher dimensions , Duke Math. J. 97 (1999), 219233.CrossRefGoogle Scholar
Borcherds, R. E., Reflection groups of Lorentzian lattices , Duke Math. J. 104 (2000), 319366.CrossRefGoogle Scholar
Bruinier, J. H., Borcherds products on O (2, l) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780 (Springer, Berlin, 2002).CrossRefGoogle Scholar
Bruinier, J. H., On the converse theorem for Borcherds products , J. Algebra 397 (2014), 315342.CrossRefGoogle Scholar
Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften, vol. 290, third edition (Springer, New York, 1999).CrossRefGoogle Scholar
Dittmann, M., Hagemeier, H. and Schwagenscheidt, M., Automorphic products of singular weight for simple lattices , Math. Z. 279 (2015), 585603.CrossRefGoogle Scholar
Eholzer, W. and Skoruppa, N.-P., Modular invariance and uniqueness of conformal characters , Comm. Math. Phys. 174 (1995), 117136.CrossRefGoogle Scholar
Freitag, E., Dimension formulae for vector valued automorphic forms, Preprint (2012), available at http://www.rzuser.uni-heidelberg.de/∼t91.Google Scholar
Gritsenko, V. A., Fourier–Jacobi functions in n variables , J. Soviet Math. 53 (1991), 243252.CrossRefGoogle Scholar
Gritsenko, V. A., Hulek, K. and Sankaran, G. K., The Kodaira dimension of the moduli of K3 surfaces , Invent. Math. 169 (2007), 519567.CrossRefGoogle Scholar
Gritsenko, V. A. and Nikulin, V. V., On the classification of Lorentzian Kac–Moody algebras , Russian Math. Surveys 57 (2002), 921979.CrossRefGoogle Scholar
Hirzebruch, F., Berger, T. and Jung, R., Manifolds and modular forms, Aspects of Mathematics, second edition (Friedrich Vieweg & Sohn, Braunschweig, 1994); with appendices by N.-P. Skoruppa and P. Baum.CrossRefGoogle Scholar
Iwasawa, K., Lectures on p-adic L-functions, Annals of Mathematics Studies (Princeton University Press, Princeton, NJ, 1972).CrossRefGoogle Scholar
Nikulin, V. V., Integer symmetric bilinear forms and some of their geometric applications , Math. USSR Izv. 14 (1979), 103167.CrossRefGoogle Scholar
Scheithauer, N. R., The fake monster superalgebra , Adv. Math. 151 (2000), 226269.CrossRefGoogle Scholar
Scheithauer, N. R., Twisting the fake monster superalgebra , Adv. Math. 164 (2001), 325348.CrossRefGoogle Scholar
Scheithauer, N. R., Generalised Kac–Moody algebras, automorphic forms and Conway’s group I , Adv. Math. 183 (2004), 240270.CrossRefGoogle Scholar
Scheithauer, N. R., On the classification of automorphic products and generalized Kac–Moody algebras , Invent. Math. 164 (2006), 641678.CrossRefGoogle Scholar
Scheithauer, N. R., The Weil representation of SL2(ℤ) and some applications , Int. Math. Res. Not. IMRN 2009 (2009), 14881545.CrossRefGoogle Scholar
Scheithauer, N. R., Some constructions of modular forms for the Weil representation of SL2(ℤ) , Nagoya Math. J. 220 (2015), 143.CrossRefGoogle Scholar