Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T02:03:19.179Z Has data issue: false hasContentIssue false

Actions of higher-rank lattices on free groups

Published online by Cambridge University Press:  29 July 2011

Martin R. Bridson
Affiliation:
Mathematical Institute, 24–29 St Giles’, Oxford OX1 3LB, UK (email: bridson@maths.ox.ac.uk)
Richard D. Wade
Affiliation:
Mathematical Institute, 24–29 St Giles’, Oxford OX1 3LB, UK (email: wade@maths.ox.ac.uk)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If G is a semisimple Lie group of real rank at least two and Γ is an irreducible lattice in G, then every homomorphism from Γ to the outer automorphism group of a finitely generated free group has finite image.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[Ali02]Alibegović, E., Translation lengths in Out(F n), Geom. Dedicata 92 (2002), 8793.CrossRefGoogle Scholar
[And65]Andreadakis, S., On the automorphisms of free groups and free nilpotent groups, Proc. Lond. Math. Soc. (3) 15 (1965), 239268.CrossRefGoogle Scholar
[BS06]Bader, U. and Shalom, Y., Factor and normal subgroup theorems for lattices in products of groups, Invent. Math. 163 (2006), 415454.CrossRefGoogle Scholar
[BL94]Bass, H. and Lubotzky, A., Linear-central filtrations on groups, in The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992), Contemporary Mathematics, vol. 169 (American Mathematical Society, Providence, RI, 1994), 4598.CrossRefGoogle Scholar
[BF10]Bestvina, M. and Feighn, M., A hyperbolic Out(F n)-complex, Groups Geom. Dyn. 4 (2010), 3158.CrossRefGoogle Scholar
[BFH97]Bestvina, M., Feighn, M. and Handel, M., Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. (GAFA) 7 (1997), 215244, 1143.CrossRefGoogle Scholar
[BFH04]Bestvina, M., Feighn, M. and Handel, M., Solvable subgroups of Out(F n) are virtually abelian, Geom. Dedicata 104 (2004), 7196.CrossRefGoogle Scholar
[BF02]Bestvina, M. and Fujiwara, K., Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 6989.CrossRefGoogle Scholar
[BLM83]Birman, J. S., Lubotzky, A. and McCarthy, J., Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983), 11071120.CrossRefGoogle Scholar
[Bou89]Bourbaki, N., Lie groups and Lie algebras, in Elements of mathematics (Berlin) (Springer, Berlin, 1989), Chapters 1–3.Google Scholar
[BF01]Bridson, M. R. and Farb, B., A remark about actions of lattices on free groups, Topology Appl. 110 (2001), 2124.CrossRefGoogle Scholar
[BV06]Bridson, M. R. and Vogtmann, K., Automorphism groups of free groups, surface groups and free abelian groups, in Problems on mapping class groups and related topics, Proceedings of Symposia in Pure Mathematics, vol. 74 ed. Farb, B. (American Mathematical Society, Providence RI, 2006), 301316.CrossRefGoogle Scholar
[BM99]Burger, M. and Monod, N., Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS) 1 (1999), 199235.CrossRefGoogle Scholar
[DGO]Dahmani, F., Guirardel, V. and Osin, D., Hyperbolic embeddings and rotating families in groups acting on hyperbolic spaces, Preliminary version, www-fourier.ujf-grenoble.fr/∼dahmani/Files/VRF.pdf.Google Scholar
[Day09]Day, M. B., Extensions of Johnson’s and Morita’s homomorphisms that map to finitely generated abelian groups, Preprint (2009), arXiv:0910.4777.Google Scholar
[DG08]Delzant, T. and Gromov, M., Courbure mésoscopique et théorie de la toute petite simplification, J. Topol. 1 (2008), 804836.CrossRefGoogle Scholar
[DMS10]Drutu, C., Mozes, S. and Sapir, M., Divergence in lattices in semisimple Lie groups and graphs of groups, Trans. Amer. Math. Soc. 362 (2010), 24512505.CrossRefGoogle Scholar
[FM98]Farb, B. and Masur, H., Superrigidity and mapping class groups, Topology 37 (1998), 11691176.CrossRefGoogle Scholar
[FS00]Farb, B. and Shalen, P., Lattice actions, 3-manifolds and homology, Topology 39 (2000), 573587.CrossRefGoogle Scholar
[Gro74]Grossman, E. K., On the residual finiteness of certain mapping class groups, J. Lond. Math. Soc. (2) 9 (1974), 160164.CrossRefGoogle Scholar
[Ham10]Hamenstädt, U., Lines of minima in outer space, Preprint (2010), arXiv:0911.3620.Google Scholar
[HM09]Handel, M. and Mosher, L., Subgroup classification inOut(F n), Preprint (2009), arXiv:0908.1255.Google Scholar
[Iva92]Ivanov, N. V., Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, vol. 115 (American Mathematical Society, Providence, RI, 1992).CrossRefGoogle Scholar
[KM96]Kaimanovich, V. A. and Masur, H., The Poisson boundary of the mapping class group, Invent. Math. 125 (1996), 221264.CrossRefGoogle Scholar
[LS77]Lyndon, R. C. and Schupp, P. E., Combinatorial group theory (Springer, Berlin, 1977).Google Scholar
[Mag35]Magnus, W., Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. 111 (1935), 259280.CrossRefGoogle Scholar
[MKS66]Magnus, W., Karrass, A. and Solitar, D., Combinatorial group theory: presentations of groups in terms of generators and relations (Interscience Publishers (John Wiley), New York–London–Sydney, 1966).Google Scholar
[Mar91]Margulis, G. A., Discrete subgroups of semisimple Lie groups (Springer, Berlin, 1991).CrossRefGoogle Scholar
[Mon06]Monod, N., An invitation to bounded cohomology, in International congress of mathematicians, Vol. II (European Mathematical Society, Zürich, 2006), 11831211.Google Scholar
[Mor93]Morita, S., The extension of Johnson’s homomorphism from the Torelli group to the mapping class group, Invent. Math. 111 (1993), 197224.CrossRefGoogle Scholar
[Pig04]Piggott, A., The topology of finite graphs, recognition and the growth of free-group automorphisms DPhil thesis, University of Oxford (2004).Google Scholar
[Wil00]Wilson, J. S., On just infinite abstract and profinite groups, in New horizons in pro-p groups, Progress in Mathematics, vol. 184 (Birkhäuser, Boston, MA, 2000), 181203.CrossRefGoogle Scholar
[Zim84]Zimmer, R. J., Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81 (Birkhäuser, Basel, 1984).CrossRefGoogle Scholar
[Zim87]Zimmer, R. J., Actions of semisimple groups and discrete subgroups, in Proceedings of the international congress of mathematicians, Vols. 1, 2 (Berkeley, CA, 1986) (American Mathematical Society, Providence, RI, 1987), 12471258.Google Scholar