Hostname: page-component-68c7f8b79f-fc4h8 Total loading time: 0 Render date: 2025-12-16T08:35:27.840Z Has data issue: false hasContentIssue false

Topological and smooth classification of Anosov maps on torus

Published online by Cambridge University Press:  15 December 2025

Ruihao Gu
Affiliation:
Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China ruihaogu@fudan.edu.cn
Yi Shi
Affiliation:
School of Mathematics, Sichuan University, Chengdu 610065, China shiyi@scu.edu.cn

Abstract

In this paper, we give a complete topological and smooth classification of non-invertible Anosov maps on torus. We show that two non-invertible Anosov maps on torus are topologically conjugate if and only if their corresponding periodic points have the same Lyapunov exponents on the stable bundles. As a corollary, if two $C^r$ non-invertible Anosov maps on torus are topologically conjugate, then the conjugacy is $C^r$-smooth along the stable foliation. Moreover, we show that the smooth conjugacy class of a non-invertible Anosov map on torus is completely determined by the Jacobians of return maps at periodic points.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

An, J., Gan, S., Gu, R. and Shi, Y., Rigidity of stable Lyapunov exponents and integrability for Anosov maps, Comm. Math. Phys. 402 (2023), 28312877; MR 4630487.10.1007/s00220-023-04786-7CrossRefGoogle Scholar
Aoki, N. and Hiraide, K., Topological theory of dynamical systems: Recent advances , North-Holland Mathematical Library, vol. 52 (North-Holland, Amsterdam, 1994); MR 1289410.Google Scholar
Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms , Lecture Notes in Mathematics, vol. 470 (Springer-Verlag, Berlin–New York, 1975); MR 0442989.Google Scholar
Brin, M., Burago, D. and Ivanov, S., Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn. 3 (2009), 111; MR 2481329.CrossRefGoogle Scholar
Cawley, E., The Teichmüller space of an Anosov diffeomorphism of $T^2$ , Invent. Math. 112 (1993), 351376; MR 1213107.10.1007/BF01232439CrossRefGoogle Scholar
Costa, J. S. C. and Micena, F., Some generic properties of partially hyperbolic endomorphisms, Nonlinearity 35 (2022), 52975310; MR 4500865.10.1088/1361-6544/ac8af0CrossRefGoogle Scholar
de la Llave, R., Invariants for smooth conjugacy of hyperbolic dynamical systems. II, Comm. Math. Phys. 109 (1987), 369378; MR 882805.10.1007/BF01206141CrossRefGoogle Scholar
de la Llave, R., Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys. 150 (1992), 289320; MR 1194019.10.1007/BF02096662CrossRefGoogle Scholar
Franks, J., Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969), 117124; MR 253352.CrossRefGoogle Scholar
Franks, J., Anosov diffeomorphisms, in Global analysis, Proceedings of Symposia in Pure Mathematics, vol. XIV (American Mathematical Society, Providence, RI, 1970), 61–93; MR 0271990.CrossRefGoogle Scholar
Gan, S., Ren, Y. and Zhang, P., Accessibility and homology bounded strong unstable foliation for Anosov diffeomorphisms on 3-torus, Acta Math. Sin. (Engl. Ser.) 33 (2017), 7176; MR 3581607.Google Scholar
Gan, S. and Shi, Y., Rigidity of center Lyapunov exponents and su-integrability, Comment. Math. Helv. 95 (2020), 569592; MR 4152625.10.4171/cmh/497CrossRefGoogle Scholar
Gogolev, A., Bootstrap for local rigidity of Anosov automorphisms on the 3-torus, Comm. Math. Phys. 352 (2017), 439455; MR 3627403.CrossRefGoogle Scholar
Gogolev, A. and Guysinsky, M., $C^1$ -differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus, Discrete Contin. Dyn. Syst. 22 (2008), 183200; MR 2410954.Google Scholar
Gogolev, A. and Rodriguez Hertz, F., Smooth rigidity for higher dimensional contact Anosov flows, Preprint (2022) arXiv:2206.06449.Google Scholar
Gogolev, A. and Rodriguez Hertz, F., Smooth rigidity for codimension one Anosov flows, Proc. Amer. Math. Soc. 151 (2023), 29752988; MR 4579371.10.1090/proc/16177CrossRefGoogle Scholar
Gogolev, A. and Rodriguez Hertz, F., Smooth rigidity for very non-algebraic expanding maps, J. Eur. Math. Soc. (JEMS) 25 (2023), 32893323; MR 4612112.CrossRefGoogle Scholar
Gogolev, A. and Shi, Y., Joint integrability and spectral rigidity for Anosov diffeomorphisms, Proc. Lond. Math. Soc. 127 (2023), 16931748.10.1112/plms.12568CrossRefGoogle Scholar
Gromov, M., Groups of polynomial growth and expanding maps, Publ. Math. Inst. Hautes Études Sci. 53 (1981), 5373; MR 623534.10.1007/BF02698687CrossRefGoogle Scholar
Hall, L. and Hammerlindl, A., Partially hyperbolic surface endomorphisms, Ergodic Theory Dynam. Systems 41 (2021), 272282; MR 4190055.10.1017/etds.2019.55CrossRefGoogle Scholar
Hammerlindl, A., Leaf conjugacies on the torus, Ergodic Theory Dynam. Systems 33 (2013), 896933; MR 3062906.10.1017/etds.2012.171CrossRefGoogle Scholar
Hammerlindl, A. and Ures, R., Ergodicity and partial hyperbolicity on the 3-torus, Commun. Contemp. Math. 16 (2014), 1350038; MR 3231058.10.1142/S0219199713500387CrossRefGoogle Scholar
He, B., Accessibility of partially hyperbolic endomorphisms with 1D center-bundles, J. Appl. Anal. Comput. 7 (2017), 334345; MR 3528216.Google Scholar
Journé, J.-L., A regularity lemma for functions of several variables, Rev. Mat. Iberoam. 4 (1988), 187193; MR 1028737.CrossRefGoogle Scholar
Katok, A. and Hasselblatt, B., Introduction to the modern theory of dynamical systems , Encyclopedia of Mathematics and its Applications, vol. 54 (Cambridge University Press, Cambridge, 1995), with a supplementary chapter by Katok and Leonardo Mendoza; MR 1326374.Google Scholar
Manning, A., There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974), 422429; MR 358865.CrossRefGoogle Scholar
Mañé, R. and Pugh, C., Stability of endomorphisms, in Dynamical systems—Warwick 1974 (Proc. symp. on applied topology and dynamical systems, University of Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Lecture Notes in Mathematics, vol. 468 (Springer-Verlag, Berlin–New York 1975), 175–184; MR 0650659.10.1007/BFb0082622CrossRefGoogle Scholar
Marco, J. M. and Moriyón, R., Invariants for smooth conjugacy of hyperbolic dynamical systems. I, Comm. Math. Phys. 109 (1987), 681689; MR 885566.10.1007/BF01208962CrossRefGoogle Scholar
Marco, J. M. and Moriyón, R., Invariants for smooth conjugacy of hyperbolic dynamical systems. III, Comm. Math. Phys. 112 (1987), 317333; MR 905170.10.1007/BF01217815CrossRefGoogle Scholar
Micena, F., Rigidity for some cases of Anosov endomorphisms of torus, Discrete Contin. Dyn. Syst. 43 (2023), 30823097; MR 4599363.10.3934/dcds.2023041CrossRefGoogle Scholar
Micena, F. and Tahzibi, A., On the unstable directions and Lyapunov exponents of Anosov endomorphisms, Fund. Math. 235 (2016), 3748; MR 3533930.Google Scholar
Moosavi, S. and Tajbakhsh, K., Classification of special Anosov endomorphisms of nil-manifolds, Acta Math. Sin. (Engl. Ser.) 35 (2019), 18711890; MR 4033587.10.1007/s10114-019-8073-6CrossRefGoogle Scholar
Moosavi, S. and Tajbakhsh, K., Robust special Anosov endomorphisms, Commun. Korean Math. Soc. 34 (2019), 897910; MR 3992640.Google Scholar
Newhouse, S. E., On codimension one Anosov diffeomorphisms, Amer. J. Math. 92 (1970), 761770; MR 277004.10.2307/2373372CrossRefGoogle Scholar
Pesin, Y., Lectures on partial hyperbolicity and stable ergodicity, Zurich Lectures in Advanced Mathematics (European Mathematical Society (EMS), Zürich, 2004); MR 2068774.10.4171/003CrossRefGoogle Scholar
Przytycki, F., Anosov endomorphisms, Studia Math. 58 (1976), 249285; MR 445555.10.4064/sm-58-3-249-285CrossRefGoogle Scholar
Qian, M., Xie, J. and Zhu, S., Smooth ergodic theory for endomorphisms , Lecture Notes in Mathematics, vol. 1978 (Springer-Verlag, Berlin, 2009); MR 2542186.Google Scholar
Radu, S. and Yang, J., Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Adv. Math. 355 (2019), 106764; MR 3995224.Google Scholar
Rodriguez Hertz, F., Stable ergodicity of certain linear automorphisms of the torus, Ann. of Math. (2) 162 (2005), 65107; MR 2201693.10.4007/annals.2005.162.65CrossRefGoogle Scholar
Rodriguez Hertz, F., Rodriguez Hertz, M. A. and Ures, R., Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math. 172 (2008), 353381; MR 2390288.10.1007/s00222-007-0100-zCrossRefGoogle Scholar
Rodriguez Hertz, M. A. and Ures, R., On the three-legged accessibility property, in New trends in one-dimensional dynamics, Springer Proceedings in Mathematical Statistics, vol. 285 (Springer, Cham, 2019), 239–248; MR 4043218.10.1007/978-3-030-16833-9_13CrossRefGoogle Scholar
Sakai, K., Anosov maps on closed topological manifolds, J. Math. Soc. Japan 39 (1987), 505519; MR 900984.CrossRefGoogle Scholar
Shub, M., Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175199; MR 240824.CrossRefGoogle Scholar