Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:23:11.971Z Has data issue: false hasContentIssue false

Régulateurs modulaires explicites via la méthode de Rogers–Zudilin

Published online by Cambridge University Press:  26 April 2017

François Brunault*
Affiliation:
ÉNS Lyon, UMPA, 46 allée d’Italie, 69007 Lyon, France email francois.brunault@ens-lyon.fr

Abstract

We compute the regulator of the Beilinson–Deninger–Scholl elements in terms of special values of $L$ -functions of modular forms. The main tool is the Rogers–Zudilin method.

Nous calculons le régulateur des éléments de Beilinson–Deninger–Scholl en termes de valeurs spéciales de fonctions $L$ de formes modulaires en utilisant la méthode de Rogers–Zudilin.

Type
Research Article
Copyright
© The Author 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beilinson, A. A., Higher regulators of modular curves , in Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemporary Mathematics, vol. 55 (American Mathematical Society, Providence, RI, 1986), 134.Google Scholar
Brunault, F., Regulators of Siegel units and applications , J. Number Theory 163 (2016), 542569.CrossRefGoogle Scholar
Colmez, P., La conjecture de Birch et Swinnerton-Dyer p-adique , Astérisque 294 (2004), ix, 251–319.Google Scholar
Deninger, C., Extensions of motives associated to symmetric powers of elliptic curves and to Hecke characters of imaginary quadratic fields , in Arithmetic geometry (Cortona, 1994), Symposia Mathematica, vol. XXXVII (Cambridge University Press, Cambridge, 1997), 99137.Google Scholar
Deninger, C. and Scholl, A. J., The Beĭlinson conjectures , in L-functions and arithmetic (Durham, 1989), London Mathematical Society Lecture Note Series, vol. 153 (Cambridge University Press, Cambridge, 1991), 173209.CrossRefGoogle Scholar
Diamantis, N., Neururer, M. and Strömberg, F., A correspondence of modular forms and applications to values of L-series , Res. Number Theory 1 (2015), 112.CrossRefGoogle Scholar
Gealy, M. T., On the Tamagawa number conjecture for motives attached to modular forms, PhD thesis, California Institute of Technology (December 2005),http://resolver.caltech.edu/CaltechETD:etd-12162005-124435.Google Scholar
Huber, A. and Kings, G., Dirichlet motives via modular curves , Ann. Sci. Éc. Norm. Supér (4) 32 (1999), 313345.CrossRefGoogle Scholar
Kato, K., p-adic Hodge theory and values of zeta functions of modular forms , Astérisque 295 (2004), ix, 117290.Google Scholar
Knopp, M. and Robins, S., Easy proofs of Riemann’s functional equation for 𝜁(s) and of Lipschitz summation , Proc. Amer. Math. Soc. 129 (2001), 19151922.CrossRefGoogle Scholar
Miyake, T., Modular forms, Springer Monographs in Mathematics, english edition (Springer, Berlin, 2006); translated from the 1976 Japanese original by Yoshitaka Maeda.Google Scholar
Rogers, M. and Zudilin, W., From L-series of elliptic curves to Mahler measures , Compositio Math. 148 (2012), 385414.CrossRefGoogle Scholar
Schappacher, N. and Scholl, A. J., The boundary of the Eisenstein symbol , Math. Ann. 290 (1991), 303321.CrossRefGoogle Scholar
Schoeneberg, B., Elliptic modular functions: an introduction, Grundlehren der Mathematischen Wissenschaften, vol. 203 (Springer, New York, 1974), translated from the German by J. R. Smart and E. A. Schwandt.CrossRefGoogle Scholar
Shimura, G., On the holomorphy of certain Dirichlet series , Proc. Lond. Math. Soc. (3) 31 (1975), 7998.CrossRefGoogle Scholar
Šokurov, V. V., Shimura integrals of cusp forms , Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 670718, 720.Google Scholar
Sturm, J., Special values of zeta functions, and Eisenstein series of half integral weight , Amer. J. Math. 102 (1980), 219240.CrossRefGoogle Scholar
Weil, A., Elliptic functions according to Eisenstein and Kronecker, Classics in Mathematics (Springer, Berlin, 1999); reprint of the 1976 original.Google Scholar
Zudilin, W., Regulator of modular units and Mahler measures , Math. Proc. Cambridge Philos. Soc. 156 (2014), 313326.CrossRefGoogle Scholar