We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[BGKP16]
Baranovsky, V., Ginzburg, V., Kaledin, D. and Pecharich, J., Quantization of line bundles on Lagrangian subvarieties, Selecta Math. (N.S.)22 (2016), 1–25.Google Scholar
[BCG97]
Bertelson, M., Cahen, M. and Gutt, S., Equivalence of star products. Geometry and physics, Classical Quantum Gravity14 (1997), A93–A107.Google Scholar
[BGNT07]
Bressler, P., Gorokhovsky, A., Nest, R. and Tsygan, B., Deformation quantization of gerbes, Adv. Math.214 (2007), 230–266.CrossRefGoogle Scholar
[BGNT15]
Bressler, P., Gorokhovsky, A., Nest, R. and Tsygan, B., Formality theorem for gerbes, Adv. Math.273 (2015), 215–241.Google Scholar
[Bry93]
Brylinski, J.-L., Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, vol. 107 (Birkhäuser, Boston, MA, 1993).CrossRefGoogle Scholar
[Bur01]
Bursztyn, H., Poisson vector bundles, contravariant connections and deformations, Progr. Theoret. Phys. Suppl. (2001), 26–37; Noncommutative geometry and string theory (Yokohama, 2001).Google Scholar
[Bur02]
Bursztyn, H., Semiclassical geometry of quantum line bundles and Morita equivalence of star products, Int. Math. Res. Not. IMRN2002 (2002), 821–846.CrossRefGoogle Scholar
[BW04]
Bursztyn, H. and Waldmann, S., Bimodule deformations, Picard groups and contravariant connections, K-Theory31 (2004), 1–37.Google Scholar
[Del73]
Deligne, P., La formule de dualite globale (Springer, Berlin, 1973), 481–587.Google Scholar
[FW79]
Fischer, H. R. and Williams, F. L., Complex-foliated structures. I. Cohomology of the Dolbeault–Kostant complexes, Trans. Amer. Math. Soc.252 (1979), 163–195.CrossRefGoogle Scholar
[Kas96]
Kashiwara, M., Quantization of contact manifolds, Publ. Res. Inst. Math. Sci.32 (1996), 1–7.CrossRefGoogle Scholar
[KS12]
Kashiwara, M. and Schapira, P., Deformation quantization modules, Astérisque, vol. 345 (Société Mathématique de France, 2012).Google Scholar
[Kon01]
Kontsevich, M., Deformation quantization of algebraic varieties, Lett. Math. Phys.56 (2001), 271–294; Euro Conférence Moshé Flato 2000, Part III (Dijon).CrossRefGoogle Scholar
[Kos70]
Kostant, B., Quantization and unitary representations. I. Prequantization, in Lectures in modern analysis and applications, III, Lecture Notes in Mathematics, vol. 170 (Springer, Berlin, 1970), 87–208.Google Scholar
[Mac05]
Mackenzie, K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213 (Cambridge University Press, Cambridge, 2005).Google Scholar