Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T00:36:11.396Z Has data issue: false hasContentIssue false

Vibrational Properties of Vacancy in Na and K Using MEAM Potential

Published online by Cambridge University Press:  03 June 2015

Vandana Gairola*
Affiliation:
Department of Physics, H N B Garhwal University Campus, Badshahithaul Tehri Garhwal - 249199, India
P. D. Semalty*
Affiliation:
Department of Physics, H N B Garhwal University Campus, Badshahithaul Tehri Garhwal - 249199, India
*
Corresponding author.Email:vandanagairola@hotmail.com
Get access

Abstract

The modified embedded atom method (MEAM) with the universal form of embedding function and a modified energy term along with the pair potential has been employed to determine the potentials for alkali metals: Na, K, by fitting to the Cauchy pressure (C12C44)/2, shear constants Gν = (C11C12 + 3C44)/5 and C44, the cohesive energy and the vacancy formation energy. The obtained potentials are used to calculate the phonon dispersions of these metals. Using these calculated phonons we evaluate the local density of states of neighbours of vacancy using Green’s function method. The local density of states of neighbours of vacancy has been used to calculate mean square displacements of these atoms and formation entropy of vacancy. The calculated mean square displacements of both 1st and 2nd neighbours of vacancy are found to be lower than that of host atom. The calculated phonon dispersions agree well with the experimental phonon dispersion curves and the calculated results of vacancy formation entropy compare well with the other available results.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Daw, M. S. and Baskes, M. I., Phys. Rev. Lett., 50 (1983) 1285.CrossRefGoogle Scholar
[2]Daw, M. S. and Baskes, M. I., Phys. Rev. B, 41 (1990) 3316.Google Scholar
[3]Adams, J. B. and Foiles, S. M., Phys. Rev. B, 29 (1984) 6443.Google Scholar
[4]Johnson, R. A. and Oh, D. J., J. Mater. Res., 4 (1989) 1195.Google Scholar
[5]Guellil, M. and Adams, J. B., J. Mater. Res., 7 (1992) 639.Google Scholar
[6]Ouyang, Y., Zhang, B., Liao, S. and Jin, Z., Physik, Z. B, 101 (1996) 161.Google Scholar
[7]Hu, W., Shu, X., and Zhang, B., Computational Material Science, 23 (2002) 175.Google Scholar
[8]Zhang, B., Ouyang, Y., Liao, S. and Jin, Z., Physica B, 262 (1999) 218.Google Scholar
[9]Hu, W. and Masahiro, F., Mod. Simul. Mater. Sci. Eng., 10 (2002) 707.Google Scholar
[10]Zhang, J. M., Wen, Y. N. and Xu, K. W., CEJP, 4 (2006) 481.Google Scholar
[11]Zhang, J. M., Wen, Y. N. and Xu, K. W., Low, J.Temp. Phys., 150 (2008) 730.Google Scholar
[12]Pohlong, S. S. and Ram, P. N., Indian Phys, J., 79 (2005) 973.Google Scholar
[13]Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., Phys. Rev. B, 29 (1984) 2963.Google Scholar
[14]Pohlong, S. S. and Ram, P. N., Phy, J.: Condens. Matter, 10 (1998) 10901.Google Scholar
[15]Kittel, C., Introduction to Solid State Physics, 7th ed., (New York, Wiely) (1995).Google Scholar
[16]Feder, R. and Charbnau, H. P., Phys. Rev., 149 (1966) 464.Google Scholar
[17]Mac, R. A.Donald, Shukla, R. C. and Kahaner, D. K., Phys. Rev. B, 29 (1984) 6189.Google Scholar
[18]Cowley, R. A., Woods, A. D. B. and Dolling, G., Phys. Rev., 150 (1966) 487.Google Scholar
[19]Woods, D. B., Brockhouse, B. N., March, R. D. and Stewart, A. T., Phys. Rev., 128 (1962) 1112.Google Scholar
[20]Flocken, J. W. and Hardy, J. R., Phys. Rev. B, 177 (1969) 1054.Google Scholar
[21]Burton, J. J., Phys. Rev. B, 5 (1972) 2948.CrossRefGoogle Scholar
[22]Schober, H. R., Petry, W. and Tramtenau, J. J., Phys.: Condens. Matter, 4 (1992) 9321.Google Scholar