Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:33:14.028Z Has data issue: false hasContentIssue false

A Lattice Boltzmann Model to Study Sedimentation Phenomena in Irrigation Canals

Published online by Cambridge University Press:  03 June 2015

Olivier Marcou*
Affiliation:
Institut de Modélisation et Analyse en Géo-Environnement et Santé, Université de Perpignan Via Domitia, Perpignan, France
Bastien Chopard*
Affiliation:
Computer Science Department, University of Geneva, Switzerland
Samira El Yacoubi*
Affiliation:
Institut de Modélisation et Analyse en Géo-Environnement et Santé, Université de Perpignan Via Domitia, Perpignan, France
Boussad Hamroun*
Affiliation:
Laboratoire d’Automatique et de Génie des Procédés, Université Claude Bernard, Lyon, France
Laurent Lefèvre*
Affiliation:
Laboratoire de Conception et Intégration des Systèmes, Grenoble INP, Valence, France
Eduardo Mendes*
Affiliation:
Laboratoire de Conception et Intégration des Systèmes, Grenoble INP, Valence, France
Get access

Abstract

Fresh water is one of the most significant resources for human activities and survival, and irrigation is among the most important uses of water. The sustainibility and performance of irrigation canals can be greatly affected by sediment transport and deposition. In our previous works, we proposed a Lattice Boltzmann model for simulating a free surface flow in an irrigation canal, as an alternative to more traditional models mainly based on shallow water equations. Here we introduce the sedimentation phenomenon into our model by adding a new algorithm, based on the earlier work by B. Chopard, A. Dupuis and A. Masselot [9,11,12,27]. Transport, erosion, deposition and toppling of sediments are taken into account and enable the global sedimentation algorithm to simulate different transport modes such as bed load and suspended load. In the present work, we study both the behaviour of a sediment deposit located at an underflow submerged gate (depending on the gate opening and the flow discharge) and the influence of the presence of such a deposit on the flow. Both numerical and experimental validations have been performed. The experiments were realized on the micro-canal of the LCIS laboratory at Valence, France. The comparisons between simulations and experiments give good qualitative agreement.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aidun, C. K. and Clausen, J. R.Lattice-boltzmann method for complex flows. Annu. Rev. Fluid Mech., 42:439472,2010.Google Scholar
[2]Benes, BedrichReal-time erosion using shallow water simulation. In 4th Workshop in Virtual Reality Interactions and Physical Simulation, 2007.Google Scholar
[3]Benzi, R., Succi, S., and Vergassola, M.The lattice boltzmann equation: theory and applications. Physics Reports, 222:145197,1992.Google Scholar
[4]Bhatnager, P., Gross, E., and Krook, M.A model for collision process in gases. Phys. Rev., 94, 511,1954.Google Scholar
[5]Buffington, J.M.The legend of a.f. shields. Journal of Hydraulic Engineering, April:376387, 1999.Google Scholar
[6]Chen, S. and Doolen, G.D.Lattice boltzmann method for fluid flows. Ann. Rev. Fluid Mech., 30:329364,1998.CrossRefGoogle Scholar
[7]Chopard, B. and Lattice-Gas, M. Droz.Cellular Automata and Lattice Boltzmann Models: an Introduction. Cambridge University Press, 1998.Google Scholar
[8]Chopard, B., Luthi, P., Masselot, A., and Dupuis, A.Cellular automata and lattice boltzmann techniques: An approach to model and simulate complex systems. Advances in Complex Systems, 5-2:103242,2002.Google Scholar
[9]Chopard, B., Masselot, A., and Dupuis, A.A lattice gas model for erosion and particle transport in a fluid. In LGA’99 conference, Tokyo, volume 129, pages 167 176, 2000.Google Scholar
[10]Dréano, JulieMorphodynamique des rivieres. PhD thesis, Universite Rennes 1, 2009.Google Scholar
[11]Dupuis, A. and Chopard, B.Lattice gas modeling of scour formation under submarine pipelines. Journal of Mathematical Physics, 178(1):161 174, 2002.Google Scholar
[12]Dupuis, A. and Chopard, B.Lattice gas simulation of sediments flow under submarine pipeline with spoilers. In The 4th international conference on Hydro Informatics, Cedar Rapids, USA, 2002.Google Scholar
[13]Fraccarollo1, L., Capart, H., and Zech, Y.A godunov method for the computation of erosional shallow water transients. Int. J. Numer. Meth. Fluids, 41:951976,2003.Google Scholar
[14]Ginzburg, IrinaEquilibrium-type and link-type lattice boltzmann models for generic advection and anisotropic-dispersion equation. Advances in Water Resources Pages, 28-11:11711195,2005.Google Scholar
[15]Ginzburg, IrinaLattice boltzmann modeling with discontinuous collision components: Hydrodynamic and advection-diffusion equations. J. Stat. Phys., 126-1:157206,2007.Google Scholar
[16]Ginzburg, Irina and Steiner, KonradLattice boltzmann model for free-surface flow and its application to filling process in casting. Journal of Comp. Physics, 185:6199,2003.Google Scholar
[17]Groh, Christopher, Rehberg, Ingo, and Kruelle, Christof A.Particle dynamics of a cartoon dune, 2009.Google Scholar
[18]Guo, Z., Zheng, C., and Shi, B.Discrete lattice effects on forcing terms in the lattice boltzmann method. Phys. Review E, 65:046308046313,2002.Google Scholar
[19]Körner, C., Pohl, T., Rude, U., Thurey, N., and Hofmann, T.Lattice boltzmann methods with free surfaces and their application in material technology. Technical report, Friedrich- Alexander-Universitaa Erlangen-Nurnberg - Institu Fur Informatik (Mathematische Maschi- nen und Datenverarbeitung), 2004.Google Scholar
[20]Korner, C., Thies, M., Hofmann, T., Thurey, N., and Rude, U.Lattice boltzmann model for free surface flow for modeling foaming. Journal of Statistical Physics, Nos. 1/2,121, no 1/2, 2005.Google Scholar
[21]Lätt, JonasHydrodynamic Limit of Lattice Boltzmann equations. PhD thesis, University of Geneva, Switzerland, 2007.Google Scholar
[22]Marcou, O., Chopard, B., Yacoubi, S. El, Hamroun, B., Lefevre, L., and Mendes, E.Lattice boltzmann models for simulation and control of unsteady flows in open channels. Journal of Irrigation and Drainage Engineering, 2009.Google Scholar
[23]Marcou, O., Yacoubi, S. El, and Chopard, B.A bi-fluid lattice boltzmann model for water flow in an irrigation channel. In ACRI 2006 Proceedings., pages 373382. Springer, 2006.Google Scholar
[24]Marcou, O., Yacoubi, S. El, and Chopard, B.Modelisation d’un canal d’irrigation par la methode de boltzmann sur reseaux. In Conference Internationale Francophone d’Automatique 2008,3-5 Septembre, Bucarest, Roumanie, 2008.Google Scholar
[25]Marcou, O., Yacoubi, S. El, Chopard, B., and Lefevre, L.Validation of a lattice boltzmann model for irrigation canals. In The Fifth International Conference on Mesoscopic Methods in Engineering and Science, ICMMES, 1620 Juin, Amsterdam, Pays-bas, 2008.Google Scholar
[26]Marcou, Olivier, Chopard, B., and Yacoubi, S. ElModeling of irrigation canals: a comparative study. Int. J. Mod. Phys. C, 18 (4):739748,2007.Google Scholar
[27]Masselot, A. and Chopard, B.A lattice boltzmann model for transport and deposition. Europhysics letters, 100(6), 1998.Google Scholar
[28]Shan, X. and Chen, H.Lattice boltzmann model for simulating flows with multiple phases and components. Phys. Review E, 47, no 3,1993.Google Scholar
[29]Shields, A.Anwendung der aehnlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung. Mitteilungen der Preuischen Versuchsanstalt fur Wasserbau, 26, 1936.Google Scholar
[30]Succi, SauroThe Lattice Boltzmann Equation, For Fluid Dynamics and Beyond. Oxford University Press, 2001.Google Scholar
[31]Sukop, M.C. and Thorne, D.T.Lattice Boltzmann Modeling: an Introduction for Geoscientists and Engineers. Springer, 2005.Google Scholar
[32]Nestor, J.Mendez, VSediment transport in irrigation canals. A. A. Balkema publishers, 1998.Google Scholar
[33]Valance, A. and Langlois, V.Ripple formation in weakly turbulent flow. Eur. Phys. Journ. B, 43:283294,2002.Google Scholar
[34]Wierschem, A., Groh, C., Rehberg, I., Aksel, N., and Kruelle, C.A.Ripple formation over a sand bed submitted to a laminar shear flow. Eur. Phys. Journ. E, 25:213221,2005.Google Scholar
[35]Wolf-Gladrow, Dieter A.Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Lecture Notes in Mathematics. Springer, 2000.Google Scholar