Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T00:19:24.868Z Has data issue: false hasContentIssue false

A Finite Volume Scheme for Three-Dimensional Diffusion Equations

Published online by Cambridge University Press:  14 September 2015

Xiang Lai
Affiliation:
Department of Mathematics, Shandong University, Jinan 250100, P.R. China
Zhiqiang Sheng
Affiliation:
Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, P.R. China
Guangwei Yuan*
Affiliation:
Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, P.R. China
*
*Corresponding author. Email addresses: qxlai2000@sdu.edu.cn (X. Lai), sheng_zhiqiang@iapcm.ac.cn (Z. Sheng), yuan_guangwei@iapcm.ac.cn (G. Yuan)
Get access

Abstract

The extension of diamond scheme for diffusion equation to three dimensions is presented. The discrete normal flux is constructed by a linear combination of the directional flux along the line connecting cell-centers and the tangent flux along the cell-faces. In addition, it treats material discontinuities by a new iterative method. The stability and first-order convergence of the method is proved on distorted meshes. The numerical results illustrate that the method appears to be approximate second-order accuracy for solution.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Li, D., Shui, H. and Tang, M., On the finite difference scheme of two-dimensional parabolic equation on non-rectangular mesh, Numer, J.. Methods Comput. Appl., 1 (1980), pp. 217224.Google Scholar
[2]Huang, W. and Kappen, A.M., A study of cell-center finite volume methods for diffusion equations, Mathematics Research Report, 98-10-01, University of Kansas, Lawrence KS66045.Google Scholar
[3]Hermeline, F., A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160 (2000), pp. 481499.CrossRefGoogle Scholar
[4]Hermeline, F., Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Eng., 192 (2003) 19391959.Google Scholar
[5]Yuan, G. and Sheng, Z., Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes, J. Comput. Phys., 224 (2007), pp. 11701189.CrossRefGoogle Scholar
[6]Morel, J.E., Dendy, J.E., Hall, M.L. and White, S.W., A cell centered Lagrangian-mesh diffusion differencing scheme, J. Comput. Phys., 103 (1992) 286299.Google Scholar
[7]Shashkov, M. and Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys., 118 (1995) 131151.Google Scholar
[8]Shashkov, M. and Steinberg, S., Solving diffusion equations with rough coefficients in rough grid, J. Comput. Phys., 129 (1996) 383405.CrossRefGoogle Scholar
[9]Hyman, J., Shashkov, M. and Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic material, J. Comput. Phys., 132 (1997) 130148.Google Scholar
[10]Aavatsmark, I., An introduction to multipoint flux approxmations for quadrilateral grids, Comput. Geosci., 6 (2002), 405432.Google Scholar
[11]Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media Part I: Derivation of the methods, SIAM J. Sci. Comput., 19 (1998) 17001716.Google Scholar
[12]Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media Part II: Discussion and numerical results, SIAM J. Sci. Comput., 19 (1998) 17171736.CrossRefGoogle Scholar
[13]Chen, G., Li, D., Wan, Z., Difference scheme based on variation principle for two dimensional heat conduction equation, Chinese Journal of Computational Physics, 19 (2002) 299304.Google Scholar
[14]Sheng, Z. and Yuan, G., A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes, SIAM J. Sci. Comput., 30 (2008) 13411361.CrossRefGoogle Scholar
[15]Yuan, G. and Sheng, Z., Calculating the vertex unknowns of nine point scheme on quadrilateral meshes for diffusion equation, Science in China Series A: Mathematics, 51 (2008) 15221536.Google Scholar
[16]Edwards, M.G. and Zheng, H., A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support, J. Comput. Phys., 227 (2008) 93339364.Google Scholar
[17]Friis, H.A. and Edwards, M.G.. A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids, J. Comput. Phys., 230 (2011) 205231.Google Scholar
[18]Lipnikov, K., Shashkov, M. and Yotov, I., Local flux mimetic finite difference methods, Technical Report LA-UR-05-8364, Los Alamos National Laboratory, 2005.Google Scholar
[19]Lipnikov, K., Morel, J., Shashkov, M., Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes, J. Comp. Phys. 199 (2004) 589597.Google Scholar
[20]Chen, G., Li, D., Wan, Z., Difference scheme by integral interpolation method for three dimensional diffusion equation, Chinese Journal of Computational Physics, 20 (2003), 205209.Google Scholar
[21]Du, Z., Yin, D., Liu, X., Lu, J., Nonorthogonal hexahedralmesh finite volume difference method for the 3-D diffusion equation, J. Tsinghua Univ (Sci & Tech), 43 (2003) 13651368.Google Scholar
[22]Yin, D., Du, Z., Lu, J., An unstructured tetrahedral mesh finite volume difference method for the diffusion equation, J. Numer. Methods Comput. Appl., 2 (2005) 92100.Google Scholar
[23]Coudiére, Y., Pierre, C., Rousseau, O., and Turpault, R.. A 2d/3d discrete duality finite volume scheme. Application to ecg simulation, Int. Journal on Finite Volumes, (2009), 6(1).Google Scholar
[24]Coudiére, Y., Hubert, F., A 3d discrete duality finite volume method for nonlinear elliptic equation. HAL Preprint URL http://bal.archives-ouvertes.fr/docs/00/45/68/37/PDF/ddfv3d.pdf.Google Scholar
[25]Coudiére, Y., Hubert, F., Manzini, G., Benchmark 3D:CeVeFE-DDFV, a discrete duality scheme with cell/vertex/face+edge unknowns, Fořt, J. et al, Finite volumes for complex applications VI-problems & perspectives, Springer proceedings in mathematics 4, DOI 10.1007/978-3-642-20671-9-95, ©Springer-Verlag Berlin Heidelberg 2011.Google Scholar
[26]Hermeline, F., Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes, Comput. Method Appl. Mech. Eng., 196 (2007) 24972526.Google Scholar
[27]Hermeline, F., A finite volume method for approximating 3D diffusion operators on general meshes, Journal of Computational Physics, 228 (2009) 57635786.Google Scholar
[28]Edwards, M.G., Zheng, H., Quasi M-matrix multifamily continuous Darcy-flux approximations with full pressure support on structured and unstructured grids in three dimension, SIAM J. Sci. Comput., 33 (2011) 455487.Google Scholar
[29]Lipnikov, K., Shashkov, M., Svyatskiy, D., The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes, J. Comput. Phys., 211 (2006) 473491.CrossRefGoogle Scholar
[30]Wu, J., Dai, Z., Gao, Z., Yuan, G., Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes, J. Comput. Phys., 229 (2010) 33823401.CrossRefGoogle Scholar
[31]Bessemoulin-Chatard, M., Chainais-Hillairet, C. and Filbet, F., On discrete functional inequalities for some finite volume schemes, 2012, arXiv:1202.4860v1.Google Scholar
[32]Eymard, R., Gallouet, Th., and Herbin, R., Finite volume methods, In Handbook of numerical analysis, volume VII, 2000, pages 7131020, North-Holland, Amsterdam.Google Scholar