Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:43:22.792Z Has data issue: false hasContentIssue false

Exact Artificial Boundary Condition for the Poisson Equation in the Simulation of the 2D Schrödinger-Poisson System

Published online by Cambridge University Press:  03 June 2015

Norbert J. Mauser*
Affiliation:
Wolfgang Pauli Institute c/o Fak. Mathematik, University Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
Yong Zhang*
Affiliation:
Wolfgang Pauli Institute c/o Fak. Mathematik, University Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
*
Get access

Abstract

We study the computation of ground states and time dependent solutions of the Schrödinger-Poisson system (SPS) on a bounded domain in 2D (i.e. in two space dimensions). On a disc-shaped domain, we derive exact artificial boundary conditions for the Poisson potential based on truncated Fourier series expansion in θ, and propose a second order finite difference scheme to solve the r-variable ODEs of the Fourier coefficients. The Poisson potential can be solved within (MNlogN) arithmetic operations where M,N are the number of grid points in r-direction and the Fourier bases. Combined with the Poisson solver, a backward Euler and a semi-implicit/leap-frog method are proposed to compute the ground state and dynamics respectively. Numerical results are shown to confirm the accuracy and efficiency. Also we make it clear that backward Euler sine pseudospectral (BESP) method in [33] can not be applied to 2D SPS simulation.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ando, T., Fowler, B. and Stern, F., Electronic properties of two-dimensional systems, Rev. Modern Phys., 54 (1982), 437672.Google Scholar
[2]Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructure, Wiley, 1991.Google Scholar
[3]Bao, W. Z. and Cai, Y. Y., Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1135.CrossRefGoogle Scholar
[4]Bao, W. Z. and Cai, Y. Y., Optimal error estimate of finite difference methods for the Gross-Pitavskii equation with angular momentum rotation, Math. Comp., 82 (2013), 99128.Google Scholar
[5]Bao, W. Z., Cai, Y. Y. and Wang, H. Q., Efficient numerical methods for computing ground states and dynamics of dipolar BoseEinstein condensates, J. Comput. Phys., 229 (2010), 78747892.Google Scholar
[6]Bao, W. Z., Chern, I-L. and Lim, F. Y., Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates, J. Comput. Phys., 219 (2006), 836854.Google Scholar
[7]Bao, W. Z. and Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (5) (2004), 16741697.CrossRefGoogle Scholar
[8]Bao, W. Z., Du, Q. and Zhang, Y. Z., Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math., 66 (3) (2006), 758786.Google Scholar
[9]Bao, W. Z. and Han, H. D., High-order local artifcial boundary conditions for problems in unbounded domains, Comput. Methods Appl. Mech. Engrg., 188 (2000), 455471.CrossRefGoogle Scholar
[10]Bao, W. Z., Jian, H. Y., Norbert, N. J. and Zhang, Y., Dimension reduction of the Schrödinger equation with Coulomb and anisotropic confining potentials, SIAM J. Appl. Math., 73 (6) (2013), 21002123.CrossRefGoogle Scholar
[11]Bao, W. Z., Jin, S. and Markowich, P. A., Time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175 (2002), 487524.Google Scholar
[12]Bao, W. Z., Mauser, N. J. and Stimming, H. P., Effective one particle quantum dynamics of electrons: A numerical study of the Schrödinger-Poisson-Xa model, Comm. Math. Sci., 1 (2003), 809831.Google Scholar
[13]Bardos, C., Erdős, L., Golse, F., Mauser, N. J. and Yau, H.-T., Derivation of the Schrödinger-Poisson equation from the quantum N-particle Coulomb problem, C. R. Math. Acad. Sci. Paris, 334(6) (2002), 515520.CrossRefGoogle Scholar
[14]Bardos, C., Golse, F. and Mauser, N. J., Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal., 7(2) (2000), 275293.Google Scholar
[15]Abdallah, N. Ben, Castella, F. and Méhats, F., Time averaging for the strongly confined non-linear Schrödinger equation, using almost-periodicity, J. Differential Equations, 245 (2008), 154200.CrossRefGoogle Scholar
[16]Chen, H., Su, Y. and Shizgal, B. D., A direct spectral collocation Poisson solver in polar and cylindrical coordinates, J. Comput. Phys., 160 (2000), 453469.Google Scholar
[17]Dong, X. C., A short note on simplified pseudospectral methods for computing ground state and dynamics of spherically symmetric Schrödinger-Poisson-Slater system, J. Comput. Phys., 230 (2011), 79177922.CrossRefGoogle Scholar
[18]Erdős, L. and Yau, H.-T., Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., 5 (2001), 11691205.Google Scholar
[19]Ethridge, F. and Greengard, L., A new fast-multipole accelerated Poisson solver in two di-mensions, SIAM J. Sci. Comput., 23 (3) (2001), 741760.Google Scholar
[20]Ferry, D. K. and Goodnick, S. M., Transport in Nanostructures, Cambridge University Press, Cambridge, UK, 1997.CrossRefGoogle Scholar
[21]Fornberg, B., A pseudospectral approach for polar and spherical geometries, SIAM J. Sci. Comput., 16 (5) (1995), 10711081.CrossRefGoogle Scholar
[22]Genovese, L., Deutsch, T., Neelov, A., Goedecker, S. and Beylkin, G., Efficient solution of Poisson equation with free boundary conditions, J. Comput. Chem., 125 074105 (2006).Google ScholarPubMed
[23]Greengard, L. and Rokhlin, V., A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numerica, 6 (1997), 229269.Google Scholar
[24]Han, H. D. and Bao, W. Z., Error estimates for the finite element approximation of problems in unbounded domains, SIAM J. Numer. Anal.,47(4) (2000), 11011119.CrossRefGoogle Scholar
[25]Han, H. D. and Huang, Z. Y., Exact artificial boundary conditions for the Schrödinger equation in R2, Commun. Math. Sci., 2 (1) (2004), 7994.Google Scholar
[26]Harrison, R., Moroz, I. M. and Tod, K. P., A numerical study of Schrödinger-Newton equations, Nonlinearity, 16 (2003), 101122.Google Scholar
[27]Lai, M.-C., Lin, W.-W. and Wang, W., A fast spectral/difference method without pole conditions for Poisson-type equations in cylindrical and spherical geometries, IMA J. Numer. Anal., 22 (2002), 537548.Google Scholar
[28]Lai, M.-C. and Wang, W.-C., Fast direct solvers for Poisson equation on 2D polar and spherical geometries, Numer. Methods Partial Differential Equations, 18 (2002), 5668.Google Scholar
[29]Shen, J., Efficient spectral-Galerkin methods III: Polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (6) (1997), 15831604.Google Scholar
[30]Soba, A., A finite element method solver for time-dependent and stationary Schrödinger equations with a generic potential, Commun. Comput. Phys., 5 (2009), 914927.Google Scholar
[31]Tan, I. H., Snider, G. L., Chang, L. D. and Hu, E. L., A self-consistent solution of Schrödinger- Poisson equations using a nonuniform mesh, J. Appl. Phys., 68 (1990), 40714076.CrossRefGoogle Scholar
[32]Zhang, Y., Optimal error estimates of compact finite difference discretizations for the Schrödinger-Poisson system, Commun. Comput. Phys., 13 (2013), 13571388.Google Scholar
[33]Zhang, Y. and Dong, X. C., On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system, J. Comput. Phys., 230 (2011), 26602676.Google Scholar