Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T04:20:52.633Z Has data issue: false hasContentIssue false

An Entropic Scheme for an Angular Moment Model for the Classical Fokker-Planck-Landau Equation of Electrons

Published online by Cambridge University Press:  03 June 2015

Jessy Mallet*
Affiliation:
Univ. Bordeaux, CELIA, UMR 5107, F- 33400 Talence, France Univ. Bordeaux, IMB, UMR 5251, F- 33400 Talence, France
Stéphane Brull*
Affiliation:
Univ. Bordeaux, IMB, UMR 5251, F- 33400 Talence, France
Bruno Dubroca*
Affiliation:
Univ. Bordeaux, CELIA, UMR 5107, F- 33400 Talence, France Univ. Bordeaux, IMB, UMR 5251, F- 33400 Talence, France
Get access

Abstract

In plasma physics domain, the electron transport is described with the Fokker-Planck-Landau equation. The direct numerical solution of the kinetic equation is usually intractable due to the large number of independent variables. That is why we propose in this paper a new model whose derivation is based on an angular closure in the phase space and retains only the energy of particles as kinetic dimension. To find a solution compatible with physics conditions, the closure of the moment system is obtained under a minimum entropy principle. This model is proved to satisfy the fundamental properties like a H theorem. Moreover an entropic discretization in the velocity variable is proposed on the semi-discrete model. Finally, we validate on numerical test cases the fundamental properties of the full discrete model.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anile, A.M., Pennisi, S. and Sammartino, M., A thermodynamical approach to Eddington factors. J. Math. Phys., 32 (1991) 544.Google Scholar
[2]Bathnagar, P.L., Gross, E.P. and Krook, M., A model for collision processes in gases. Phys. Rev., 94 (1954) 511525.Google Scholar
[3]Berthon, C., Frank, M., Sarazin, C. and Turpault, R., Numerical methods for balance laws with space dependent flux: application to radiotherapy dose calculation. Comm. Comp. Phys., 10 (2011) 11841210.Google Scholar
[4]Buet, C. and Cordier, S., Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation. SIAM J. Numer. Anal. 36, No. 3 (1999) 953973.Google Scholar
[5]Buet, C., Cordier, S., Degond, P. and Lemou, M., Fast algorithms fot numerical, Conservative, and entropy approximations of the Fokker-Planck-Landau equation. J. Comp. Phys., 133 (1997) 310322.Google Scholar
[6]Buet, C. and Dellacherie, S., On the Chang and Cooper scheme applied to a linear Fokker-Planck equation. Comm. in Math. Sc., 8 (2010) 10791090.Google Scholar
[7]Buet, C., Dellacherie, S. and Sentis, R., Résolution numérique d’une équation de Fokker-Planck ionique avec température électronique. Acad, C. R.Sci. Paris Serie I Math., 327 (1998) 9398.Google Scholar
[8]Chen, F., Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York, 1984.Google Scholar
[9]Crispel, P., Degond, P. and Vignal, M.-H., A plasma expansion model based on the full Euler-Poisson system. Math. Mod. Meth. Appl. Sci., 17 (2007) 11291158.Google Scholar
[10]Crispel, P., Degond, P. and Vignal, M.-H., Quasi-neutral fluid models for current-carrying plasmas. J. Comp. Phys., 205 (2005) 408438.Google Scholar
[11]Crispel, P., Degond, P. and Vignal, M.-H., An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi-neutral limit. J. Comp. Phys., 223 (2007) 208234.CrossRefGoogle Scholar
[12]Crouseilles, N. and Filbet, F., Numerical approximation of collisional plasmas by high order methods. J. Comp. Phys., 201 (2004) 546572.Google Scholar
[13]Degond, P., Lucquin-Desreux, B., An entropy scheme for the fokker-planck collision operator of plasma kinetic theory. Nummer. Math, 68 (1994) 239262.Google Scholar
[14]Delcroix, J.L. and Bers, A., Physique des Plasmas. InterEditions, Paris, V. 2 (1994).Google Scholar
[15]Dellacherie, S., Sur un schéma numerique semi-discret appliqué a un opérateur de Fokker-Planck isotrope. Acad, C. R.Sci. Paris Série I Math., 328 (1999) 12191224.Google Scholar
[16]Dellacherie, S., Numerical resolution of an ion-electron collision operator in axisymmetrical geometry. Transp. Theory and Stat. Phys., 31 (2002) 397429.Google Scholar
[17]Dellacherie, S., Buet, C. and Sentis, R., Numerical solution of an ionic Fokker-Planck equation with electronic temperature. SIAM J. Numer. Anal., 39 (2001) 12191253.Google Scholar
[18]Dellacherie, S., Contribution a l’analyse et a la simulation numérique des équations cinétiques décrivant un plasma chaud. PhD thesis, University Denis Diderot Paris VII, 1998.Google Scholar
[19]Dubroca, B. and Feugeas, J.L., Entropic moment closure hierarchy for the radiative transfert equation. Acad, C. R.Sci. Paris Ser. I, 329 (1999) 915920.Google Scholar
[20]Duclous, R., Modélisation et Simulation Numérique multi-échelle du transport cinétique électronique. PhD thesis, University Bordeaux 1, 2009.Google Scholar
[21]Duclous, R., Dubroca, B., Filbet, F. and Tikhonchuk, V., High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF application. J. Comp. Phys., 228 (2009) 50725100.Google Scholar
[22]Frank, M., Dubroca, B. and Klar, A., Partial moment entropy approximation to radiative transfer. J. Comp. Phys., 218 (2006) 118.Google Scholar
[23]Grad, H., On Kinetic theory of the rarefied gases. Comm. Pure and Appl. Math., Vol.II (1949) 331407.Google Scholar
[24]Harten, A., Lax, P. D. and Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. Siam Review, 25 (1983) 3561.Google Scholar
[25]Hauck, C. and McClarren, R., Positive PN closures. SIAM J. Sci. Comp., 32 (2010) 26032626.Google Scholar
[26]Junk, M., Maximum entropy for reduced moment problems. Math. Mod. Meth. in Appl. Sci., 10 (2000) 10011025.Google Scholar
[27]Kingham, R.J. and Bell, A.R., An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields. J. Comp. Phys., 194 (2004) 134.Google Scholar
[28]Laval, G., La Fusion Thermonucléaire Inertielle par Laser. Eyrolles, P. 1, V. 1, editors Daufray, R. et Watteau, J.P., Paris, France, 1994.Google Scholar
[29]Levermore, D., Moment closure hierarchies for kinetic theories. J. Stat. Phys., 83 (1996).Google Scholar
[30]Minerbo, G.N., Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Transfer, 20 (1978) 541.Google Scholar
[31]Schneider, J., Entropic approximation in kinetic theory. ESAIM: M2AN, 38 (2004) 541561.Google Scholar
[32]Sentoku, Y. and Kemp, A.J., Numerical method for particle simulations at extreme densities and temperatures: weighted particles, relativistic collisions and reduced currents. J. Comp. Phys., 227 (2008) 68466861.CrossRefGoogle Scholar