Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T01:05:31.468Z Has data issue: false hasContentIssue false

Sum of Many Dilates

Published online by Cambridge University Press:  08 September 2015

GEORGE SHAKAN*
Affiliation:
Department of Mathematics, University of Wyoming, Laramie, Wyoming 82072, USA (e-mail: gshakan@uwyo.edu)

Abstract

We show that for any coprime integers λ1, . . ., λk and any finite A$\mathbb{Z}$, one has

|\lambda_1 \cdot A + \cdots + \lambda_k \cdot A| \geq (|\lambda_1| + \cdots + |\lambda_k|)|A|- C,
where C only depends on λ1, . . ., λk.

Type
Paper
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Balog, A. and Shakan, G. On the sum of dilations of a set. Acta Arithmetica, to appear.Google Scholar
[2] Bukh, B. (2008) Sums of dilates. Combin. Probab. Comput. 17 627639.CrossRefGoogle Scholar
[3] Cilleruelo, J., Hamidoune, Y. and Serra, O. (2009) On sums of dilates. Combin. Probab. Comput. 18 871880.CrossRefGoogle Scholar
[4] Du, S. S., Cao, H. Q. and Sun, Z. W. (2014) On a sumset problem for integers. Electron. J. Combin. 21 125.CrossRefGoogle Scholar
[5] Gyarmati, K., Matolcsi, M. and Ruzsa, I. Z. (2010) A superadditivity and submultiplicativity property for cardinalities of sumsets. Combinatorica 30 163174.CrossRefGoogle Scholar
[6] Hamidoune, Y. and Rué, J. (2011) A lower bound for the size of a Minkowski sum of dilates. Combin. Probab. Comput. 20 249256.CrossRefGoogle Scholar
[7] Konyagin, S. and Łaba, I. (2006) Distance sets of well-distributed planar sets for polygonal norms. Israel J. Math 152 157179.CrossRefGoogle Scholar
[8] Ljujić, Z. (2013) A lower bound for the size of a sum of dilates. J. Combin. Number Theory 5 3151.Google Scholar
[9] Plagne, A. (2011) Sums of dilates in groups of prime order. Combin. Probab. Comput. 20 867873.CrossRefGoogle Scholar
[10] Pontiveros, G. (2013) Sum of dilates in $\mathbb{Z}$ p . Combin. Probab. Comput. 22 282293.CrossRefGoogle Scholar
[11] Tao, T. and Vu, V. (2006) Additive Combinatorics, Cambridge University Press.CrossRefGoogle Scholar