We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
[1]
Abramenko, P. and Brown, K. S. (2008) Buildings: Theory and Applications, Vol. 248 of Graduate Texts in Mathematics, Springer.10.1007/978-0-387-78835-7CrossRefGoogle Scholar
[2]
Benjamini, I. F. and Brieussel, J. (2023) Noise sensitivity of random walks on groups. ALEA Lat. Am. J. Probab. Math. Stat.20(2) 1139–1164.10.30757/ALEA.v20-42CrossRefGoogle Scholar
[3]
Hebisch, W. and Saloff-Coste, L. (1993) Gaussian estimates for Markov chains and random walks on groups. Ann. Probab.21(2) 673–709.10.1214/aop/1176989263CrossRefGoogle Scholar
[4]
Kalai, G. (2018) Three puzzles on mathematics, computation, and games. InProceedings of the International Congress of Mathematicians—Rio de Janeiro, Vol. I Plenary lectures, World Sci. Publ., pp. 551–606.Google Scholar
[5]
Krámli, A. and Szász, D. (1983) Random walks with internal degrees of freedom. I. Local limit theorems. Z. Wahrscheinlichkeitstheor. Verw. Geb.63(1) 85–95.10.1007/BF00534179CrossRefGoogle Scholar
[6]
Kotani, M. and Sunada, T. (2001) Standard realizations of crystal lattices via harmonic maps. Trans. Amer. Math. Soc.353(1) 1–20.10.1090/S0002-9947-00-02632-5CrossRefGoogle Scholar
[7]
Kotani, M., Shirai, T. and Sunada, T. (1998) Asymptotic behavior of the transition probability of a random walk on an infinite graph. J. Funct. Anal.159(2) 664–689.10.1006/jfan.1998.3322CrossRefGoogle Scholar
[8]
Lawler, G. F. and Limic, V. (2010) Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics. Cambridge University Press.10.1017/CBO9780511750854CrossRefGoogle Scholar
[9]
Pollicott, M. and Sharp, R. (1994) Rates of recurrence for
${f Z}^q$
and
${f R}^q$
extensions of subshifts of finite type. J. London Math. Soc.49(2) 401–416.10.1112/jlms/49.2.401CrossRefGoogle Scholar
[10]
Sunada, T. (2013) Topological Crystallography: With a View Towards Discrete Geometric Analysis, Vol. 6 of Surveys and Tutorials in the Applied Mathematical Sciences, Springer.10.1007/978-4-431-54177-6CrossRefGoogle Scholar
[11]
Tanaka, R. (2024) Non-noise sensitivity for word hyperbolic groups. Ann. Fac. Sci. Toulouse Math.33(5) 1487–1510.10.5802/afst.1803CrossRefGoogle Scholar
[12]
Woess, W. (2000) Random Walks on Infinite Graphs and Groups, Vol. 138 of Cambridge Tracts in Mathematics, Cambridge University Press.10.1017/CBO9780511470967CrossRefGoogle Scholar