Hostname: page-component-6bb9c88b65-9c7xm Total loading time: 0 Render date: 2025-07-24T06:49:30.282Z Has data issue: false hasContentIssue false

Neuroimaging findings in disruptive behavior disorders

Published online by Cambridge University Press:  10 April 2015

Rosalind H. Baker
Affiliation:
School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
Roberta L. Clanton
Affiliation:
School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
Jack C. Rogers
Affiliation:
School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
Stéphane A. De Brito*
Affiliation:
School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
*
*Address for correspondence: Stéphane De Brito, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. (Email: s.a.debrito@bham.ac.uk)

Abstract

Decades of research have shown that youths with disruptive behavior disorders (DBD) are a heterogeneous population. Over the past 20 years, researchers have distinguished youths with DBD as those displaying high (DBD/HCU) versus low (DBD/LCU) callous-unemotional (CU) traits. These traits include flat affect and reduced empathy and remorse, and are associated with more severe, varied, and persistent patterns of antisocial behavior and aggression. Conduct problems in youths with HCU and LCU are thought to reflect distinct causal vulnerabilities, with antisocial behavior in youths with DBD/HCU reflecting a predominantly genetic etiology, while antisocial behavior in youths with DBD/LCU is associated primarily with environmental influences. Here we selectively review recent functional (fMRI) and structural (sMRI) magnetic resonance imaging research on DBD, focusing particularly on the role of CU traits. First, fMRI studies examining the neural correlates of affective stimuli, emotional face processing, empathy, theory of mind, morality, and decision-making in DBD are discussed. This is followed by a review of the studies investigating brain structure and structural connectivity in DBD. Next, we highlight the need to further investigate females and the role of sex differences in this population. We conclude the review by identifying potential clinical implications of this research.

Information

Type
Review Articles
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

**

Rosalind H. Baker and Roberta L. Clanton contributed equally to this work.

*

Rosalind Baker, Jack Rogers, and Stéphane De Brito are supported by the European Commission’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement no. 602407 (FemNAT-CD) (http://ec.europa.eu). Roberta Clanton is supported by a Ph.D. studentship from the College of Life and Environmental Sciences, University of Birmingham. Stéphane A. De Brito was supported by a research fellowship from the Swiss National Science Foundation (SNSF PA00P1_139586). We thank Dr. Graeme Fairchild for his comments on a previous version of the manuscript.

References

1. AmericanPsychiatricAssociation. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington, DC: American Psychiatric Association; 2013.Google Scholar
2. Scott, S, Knapp, M, Henderson, J, Maughan, B. Financial cost of social exclusion: follow up study of antisocial children into adulthood. BMJ. 2001; 323(7306): 191.CrossRefGoogle ScholarPubMed
3. De Brito, SA, Hodgins, S. Antisocial personality disorder. In: McMurran M, Howard R, eds. Personality, Personality Disorder and Violence. Vol. 42. Chichester, UK: Wiley-Blackwell; 2009: 133153.Google Scholar
4. Odgers, CL, Caspi, A, Broadbent, JM, et al. Prediction of differential adult health burden by conduct problem subtypes in males. Arch Gen Psychiatry. 2007; 64(4): 476484.CrossRefGoogle ScholarPubMed
5. Frick, PJ, Viding, E. Antisocial behavior from a developmental psychopathology perspective. Dev Psychopathol. 2009; 21(4): 11111131.Google Scholar
6. Frick, PJ, Marsee, MA. Psychopathy and developmental pathways to antisocial behavior in youth. In de Haan M, Gunnar MR, eds. Handbook of Psychopathy. New York: Guilford Press; 2006: 353374.Google Scholar
7. Hare, RD. Manual for the Revised Psychopathy Checklist, 2nd ed. Toronto, ON: Multi-Health Systems; 2003.Google Scholar
8. Blair, RJR. The neurobiology of psychopathic traits in youths. Nat Rev Neurosci. 2013; 14(11): 786799.CrossRefGoogle ScholarPubMed
9. Viding, E, McCrory, EJ. Genetic and neurocognitive contributions to the development of psychopathy. Dev Psychopathol. 2012; 24(3): 969983.CrossRefGoogle Scholar
10. Viding, E, Blair, RJR, Moffitt, TE, Plomin, R. Evidence for substantial genetic risk for psychopathy in 7-year-olds. J Child Psychol Psychiatry. 2005; 46(6): 592597.CrossRefGoogle ScholarPubMed
11. Frick, PJ, Ray, JV, Thornton, LC, Kahn, RE. Can callous-unemotional traits enhance the understanding, diagnosis, and treatment of serious conduct problems in children and adolescents? A comprehensive review. Psychol Bull. 2014; 140(1): 157.Google Scholar
12. Dadds, MR, Perry, Y, Hawes, DJ, et al. Attention to the eyes and fear-recognition deficits in child psychopathy. Br J Psychiatry. 2006; 189(3): 280281.CrossRefGoogle Scholar
13. Jones, AP, Happe, FGE, Gilbert, F, Burnett, S, Viding, E. Feeling, caring, knowing: different types of empathy deficit in boys with psychopathic tendencies and autism spectrum disorder. J Child Psychol Psychiatry. 2010; 51(11): 11881197.Google Scholar
14. Moffitt, TE, Arseneault, L, Jaffee, SR, et al. Research review: DSM-V conduct disorder: research needs for an evidence base. J Child Psychol Psychiatry. 2008; 49(1): 333.Google Scholar
15. Cohen, P, Cohen, J, Kasen, S, et al. An epidemiologic study of disorders in late childhood and adolescence, 1: age-specific and gender-specific prevalance. J Child Psychol Psychiatry. 1993; 34(6): 851867.Google Scholar
16. Moffitt, TE, Caspi, A, Rutter, M, Silva, PA. Sex Differences in Antisocial Behaviour: Conduct Disorder, Delinquency and Violence in the Dunedin Longitudinal Study. Cambridge, UK: Cambridge University Press; 2001.Google Scholar
17. Frick, PJ, Dickens, C. Current perspectives on conduct disorder. Curr Psychiatry Rep. 2006; 8(1): 5972.Google Scholar
18. Lang, PJ, Bradley, MM, Cuthbert, BN. International Affective Picture System (IAPS): Technical Manual and Affective Ratings. Gainesville, FL: The Center for Research in Psychophysiology, University of Florida; 1999.Google Scholar
19. Rubia, K. “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dysfunction in conduct disorder: a review. Biol Psychiatry. 2011; 69(12): e69e87.Google Scholar
20. Sterzer, P, Stadler, C. Neuroimaging of aggressive and violent behaviour in children and adolescents. Front Behav Neurosci. 2009; 3: 35.Google Scholar
21. Herpertz, SC, Huebner, T, Marx, I, et al. Emotional processing in male adolescents with childhood-onset conduct disorder. J Child Psychol Psychiatry. 2008; 49(7): 781791.Google Scholar
22. Sterzer, P, Stadler, C, Krebs, A, Kleinschmidt, A, Poustka, F. Abnormal neural responses to emotional visual stimuli in adolescents with conduct disorder. Biol Psychiatry. 2005; 57(1): 715.CrossRefGoogle ScholarPubMed
23. Viding, E, Sebastian, CL, Dadds, MR, et al. Amygdala response to preattentive masked fear in children with conduct problems: the role of callous-unemotional traits. Am J Psychiatry. 2012; 169(10): 11091116.Google Scholar
24. Sebastian, C, McCrory, E, Dadds, M, et al. Neural responses to fearful eyes in children with conduct problems and varying levels of callous–unemotional traits. Psychol Med. 2014; 44(1): 99109.CrossRefGoogle ScholarPubMed
25. Marsh, AA, Finger, EC, Mitchell, DG, et al. Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. Am J Psychiatry. 2008; 165(6): 712720.CrossRefGoogle ScholarPubMed
26. Jones, AP, Laurens, KR, Herba, CM, Barker, GJ, Viding, E. Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. Am J Psychiatry. 2009; 166(1): 95102.Google Scholar
27. White, SF, Williams, WC, Brislin, SJ, et al. Reduced activity within the dorsal endogenous orienting of attention network to fearful expressions in youth with disruptive behavior disorders and psychopathic traits. Dev Psychopathol. 2012; 24(3): 11051116.CrossRefGoogle ScholarPubMed
28. Cohn, MD, Popma, A, van den Brink, W, et al. Fear conditioning, persistence of disruptive behavior and psychopathic traits: an fMRI study. Translational Psychiatry. 2013; 3: e319.Google Scholar
29. White, SF, Marsh, AA, Fowler, KA, et al. Reduced amygdala response in youths with disruptive behavior disorders and psychopathic traits: decreased emotional response versus increased top-down attention to nonemotional features. Am J Psychiatry. 2012; 169(7): 750758.CrossRefGoogle ScholarPubMed
30. Sylvers, PD, Brennan, PA, Lilienfeld, SO. Psychopathic traits and preattentive threat processing in children: a novel test of the fearlessness hypothesis. Psychol Sci. 2011; 22(10): 12801287.CrossRefGoogle ScholarPubMed
31. Newman, JP, Baskin-Sommers, AR. Early selective attention abnormalities in psychopathy: Implications for self-regulation. In: Posner MI, ed. Cogntive Neuroscience of Attention, 2nd ed. New York: Guilford Press; 2011: 421440.Google Scholar
32. Lozier, LM, Cardinale, EM, Van Meter, JW, Marsh, AA. Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry. 2014; 71(6): 627636.Google Scholar
33. Lamm, C, Decety, J, Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage. 2011; 54(3): 24922502.Google Scholar
34. Decety, J, Michalska, KJ, Akitsuki, Y, Lahey, BB. Atypical empathic responses in adolescents with aggressive conduct disorder: a functional MRI investigation. Biol Psychol. 2009; 80(2): 203211.Google Scholar
35. Marsh, AA, Finger, EC, Fowler, KA, et al. Empathic responsiveness in amygdala and anterior cingulate cortex in youths with psychopathic traits. J Child Psychol Psychiatry. 2013; 54(8): 900910.CrossRefGoogle ScholarPubMed
36. Lockwood, PL, Sebastian, CL, McCrory, EJ, et al. Association of callous traits with reduced neural response to others’ pain in children with conduct problems. Curr Biol. 2013; 23(10): 901905.CrossRefGoogle ScholarPubMed
37. Sebastian, CL, McCrory, EJP, Cecil, CAM, et al. Neural responses to affective and cognitive theory of mind in children with conduct problems and varying levels of callous-unemotional traits. Arch Gen Psychiatry. 2012; 69(8): 814822.CrossRefGoogle ScholarPubMed
38. O’Nions, E, Sebastian, CL, McCrory, E, Chantiluke, K, Happe, F, Viding, E. Neural bases of theory of mind in children with autism spectrum disorders and children with conduct problems and callous-unemotional traits. Dev Sci. 2014; 17(5): 786796.Google Scholar
39. Marsh, AA, Finger, EC, Fowler, KA, et al. Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Res. 2011; 194(3): 279286.Google Scholar
40. Viding, E, Seara-Cardoso, A. Why do children with disruptive behavior disorders keep making bad choices? Am J Psychiatry. 2013; 170(3): 253255.CrossRefGoogle ScholarPubMed
41. Rubia, K, Smith, AB, Halari, R, et al. Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am J Psychiatry. 2009; 166(1): 8394.Google Scholar
42. Crowley, TJ, Dalwani, MS, Mikulich-Gilbertson, SK, et al. Risky decisions and their consequences: Neural processing by boys with antisocial substance disorder. PLoS One. 2010; 5(9): e12835.Google Scholar
43. Finger, EC, Marsh, AA, Mitchell, DG, et al. Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning. Arch Gen Psychiatry. 2008; 65(5): 586594.CrossRefGoogle ScholarPubMed
44. Finger, EC, Marsh, AA, Blair, KS, et al. Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. Am J Psychiatry. 2011; 168(2): 152162.Google Scholar
45. White, SF, Pope, K, Sinclair, S, et al. Disrupted expected value and prediction error signaling in youths with disruptive behavior disorders during a passive avoidance task. Am J Psychiatry. 2013; 170(3): 315323.Google Scholar
46. White, SF, Fowler, KA, Sinclair, S, et al. Disrupted expected value signaling in youth with disruptive behavior disorders to environmental reinforcers. J Am Acad Child Adolesc Psychiatry. 2014; 53(5): 579588.Google Scholar
47. Fairchild, G, Van Goozen, SHM, Calder, AJ, Stollery, SJ, Goodyer, IM. Deficits in facial expression recognition in male adolescents with early-onset or adolescence-onset conduct disorder. J Child Psychol Psychiatry. 2009; 50(5): 627636.CrossRefGoogle ScholarPubMed
48. White, SF, Clanton, R, Brislin, SJ, et al. Temporal discounting and conduct disorder in adolescents. J Personal Disord. 2014; 28(1): 518.Google Scholar
49. Fairchild, G, Hagan, CC, Walsh, ND, Passamonti, L, Calder, AJ, Goodyer, IM. Brain structure abnormalities in adolescent girls with conduct disorder. J Child Psychol Psychiatry. 2013; 54(1): 8695.Google Scholar
50. Olvera, R, Glahn, D, O’Donnell, L, et al. Cortical volume alterations in conduct disordered adolescents with and without bipolar disorder. Journal of Clinical Medicine. 2014; 3(2): 416431.Google Scholar
51. Huebner, T, Vloet, TD, Marx, I, et al. Morphometric brain abnormalities in boys with conduct disorder. J Am Acad Child Adolesc Psychiatry. 2008; 47(5): 540547.Google Scholar
52. Fahim, C, He, Y, Yoon, U, Chen, J, Evans, A, Pérusse, D. Neuroanatomy of childhood disruptive behavior disorders. Aggressive Behavior. 2011; 37(4): 326337.Google Scholar
53. Stevens, MC, Haney-Caron, E. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence. J Psychiatry Neurosci. 2012; 37(6): 389398.Google Scholar
54. Fairchild, G, Passamonti, L, Hurford, G, et al. Brain structure abnormalities in early-onset and adolescent-onset conduct disorder. Am J Psychiatry. 2011; 168(6): 624633.Google Scholar
55. Sterzer, P, Stadler, C, Poustka, F, Kleinschmidt, A. A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. Neuroimage. 2007; 37(1): 335342.CrossRefGoogle ScholarPubMed
56. Hyatt, CJ, Haney-Caron, E, Stevens, MC. Cortical thickness and folding deficits in conduct-disordered adolescents. Biol Psychiatry. 2012; 72(3): 207214.Google Scholar
57. Wallace, GL, White, SF, Robustelli, B, et al. Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits. J Am Acad Child Adolesc Psychiatry. 2014; 53(4): 456465.Google Scholar
58. Haney-Caron, E, Caprihan, A, Stevens, MC. DTI-measured white matter abnormalities in adolescents with conduct disorder. J Psychiatr Res. 2014; 48(1): 111120.Google Scholar
59. Passamonti, L, Fairchild, G, Fornito, A, et al. Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder. PLoS One. 2012; 7(11): e48789.CrossRefGoogle ScholarPubMed
60. Sarkar, S, Craig, MC, Catani, M, et al. Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: a diffusion tensor imaging study. Psychol Med. 2013; 43(2): 401411.CrossRefGoogle ScholarPubMed
61. Zhang, J, Gao, J, Shi, H, et al. Sex differences of uncinate fasciculus structural connectivity in individuals with conduct disorder. BioMed Research International. 2014; 2014: 673165. http://dx.doi.org/10.1155/2014/673165.Google Scholar
62. Li, TQ, Mathews, VP, Wang, Y, Dunn, D, Kronenberger, W. Adolescents with disruptive behavior disorder investigated using an optimized MR diffusion tensor imaging protocol. Ann N Y Acad Sci. 2005; 1064: 184192.Google Scholar
63. Zhang, J, Zhu, X, Wang, X, et al. Increased structural connectivity in corpus callosum in adolescent males with conduct disorder. J Am Acad Child Adolesc Psychiatry. 2014; 53(4): 466475.Google Scholar
64. De Brito, SA, Mechelli, A, Wilke, M, et al. Size matters: increased grey matter in boys with conduct problems and callous-unemotional traits. Brain. 2009; 132(Pt 4): 843852.CrossRefGoogle ScholarPubMed
65. Gogtay, N, Giedd, JN, Lusk, L, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004; 101(21): 81748179.Google Scholar
66. De Brito, SA, McCrory, EJ, Mechelli, A, et al. Small, but not perfectly formed: decreased white matter concentration in boys with psychopathic tendencies. Mol Psychiatry. 2011; 16(5): 476477.Google Scholar
67. Rijsdijsk, FV, Viding, E, De Brito, S, et al. Heritable variations in gray matter concentration as a potential endophenotype for psychopathic traits. Arch Gen Psychiatry. 2010; 67(4): 406413.Google Scholar
68. Finger, EC, Marsh, A, Blair, KS, et al. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits. Psychiatry Res. 2012; 202(3): 239244.Google Scholar
69. Ermer, E, Cope, LM, Nyalakanti, PK, Calhoun, VD, Kiehl, KA. Aberrant paralimbic gray matter in incarcerated male adolescents with psychopathic traits. J Am Acad Child Adolesc Psychiatry. 2013; 52(1): 94103.Google Scholar
70. Cope, LM, Ermer, E, Nyalakanti, PK, Calhoun, VD, Kiehl, KA. Paralimbic gray matter reductions in incarcerated adolescent females with psychopathic traits. J Abnorm Child Psychol. 2014; 42(4): 659668.CrossRefGoogle ScholarPubMed
71. Lenroot, RK, Giedd, JN. Sex differences in the adolescent brain. Brain Cogn. 2010; 72(1): 4655.Google Scholar
72. Fairchild, G, Hagan, CC, Passamonti, L, Walsh, ND, Goodyer, IM, Calder, AJ. Atypical neural responses during face processing in female adolescents with conduct disorder. J Am Acad Child Adolesc Psychiatry. 2014; 53(6): 677687.Google Scholar
73. Passamonti, L, Fairchild, G, Goodyer, IM, et al. Neural abnormalities in early-onset and adolescence-onset conduct disorder. Arch Gen Psychiatry. 2010; 67(7): 729738.Google Scholar
74. Dadds, MR, Rhodes, T. Aggression in young children with concurrent callous-unemotional traits: can the neurosciences inform progress and innovation in treatment approaches? In: Hodgins S, Viding E, Plodowski A, eds. The Neurobiological Basis of Violence: Science and Rehabilitation. Vol. 363. New York: Oxford University Press; 2008: 8599.Google Scholar
75. Dalwani, Manish, Sakai, JT, Mikulich-Gilberton, SK, et al. Reduced cortical gray matter volume in male adolescents with substance and conduct problems. Drug and Alcohol Dependence. 2011; 118(2-3): 295305.Google Scholar
76. White, Stuart, F, Brislin, SJ, Sinclair, S, et al. The relationship between large cavum septum pellucidum and antisocial behavior, callous‐unemotional traits and psychopathy in adolescents. Journal of Child Psychology and Psychiatry. 2013; 54(5): 575581.Google Scholar
77. Stadler, C, Sterzer, P, Schmeck, K, Krebs, A, Kleinschmidt, A. Reduced anterior cingulate activation in aggressive children and adolescents during affective stimulation: Association with temperament traits. Journal of Psychiatric Research. 2007; 41: 410417.Google Scholar