Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:09:55.991Z Has data issue: false hasContentIssue false

Brain circuitry of compulsivity and impulsivity

Published online by Cambridge University Press:  10 May 2013

Jon E. Grant*
Affiliation:
Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
Suck Won Kim
Affiliation:
Department of Psychiatry, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
*
*Address for correspondence: Jon E. Grant, JD, MD, MPH, Professor, Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Pritzker School of Medicine, 5841 S. Maryland Avenue, MC 3077, Chicago, IL 60637, USA. (Email jongrant@uchicago.edu)

Abstract

Impulsivity and compulsivity have been considered opposite poles of a continuous spectrum, but their relationship appears to be more complex. Disorders characterized by impulsivity often have features of compulsivity and vice versa. The overlaps of the constructs of compulsivity and impulsivity warrant additional investigation, not only to identify the similarities and differences, but also to examine the implications for prevention and treatment strategies of both compulsive and impulsive behaviors.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by a Center of Excellence in Gambling Research grant from the National Center for Responsible Gaming to Dr. Grant.

References

1. Fineberg, NA, Potenza, MN, Chamberlain, SR, etal. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology. 2010; 35(3): 591604.CrossRefGoogle ScholarPubMed
2. Dalley, JW, Everitt, BJ, Robbins, TW. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 2011; 69(4): 680694.CrossRefGoogle ScholarPubMed
3. Robbins, TW, Gillan, CM, Smith, DG, etal. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012; 16(1): 8191.CrossRefGoogle ScholarPubMed
4. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed. text rev. Washington DC: American Psychiatric Association Press; 2000.Google Scholar
5. Moeller, FG, Barratt, ES, Dougherty, DM, etal. Psychiatric aspects of impulsivity. Am J Psychiatry. 2001; 158(11): 17831793.CrossRefGoogle ScholarPubMed
6. Hollander, E. Obsessive-compulsive spectrum disorders: an overview. Psychiatr Ann. 1993; 23: 355358.CrossRefGoogle Scholar
7. Goldstein, RZ, Volkow, ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002; 159(10): 16421652.CrossRefGoogle ScholarPubMed
8. Padhi, AK, Mehdi, AM, Craig, KJ, etal. Current classification of impulse control disorder: neurocognitive and behavioral models of impulsivity and the role of personality. In: Grant JE, Potenza MN, eds. The Oxford Handbook of Impulse Control Disorders. New York: Oxford University Press; 2012: 2546.Google Scholar
9. Bechara, A. Impulse control disorders in neurological settings. In: Grant JE, Potenza MN, eds. The Oxford Handbook of Impulse Control Disorders. New York: Oxford University Press; 2012: 429444.Google Scholar
10. Leeman, RF, Potenza, MN. Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology (Berl). 2012; 219(2): 469490.CrossRefGoogle ScholarPubMed
11. Kable, JW, Glimcher, PW. The neurobiology of decision: consensus and controversy. Neuron. 2009; 63(6): 733745.CrossRefGoogle ScholarPubMed
12. Kable, JW, Glimcher, PW. An “as soon as possible” effect in human intertemporal decision making: behavioral evidence and neural mechanisms. J Neurophysiol. 2010; 103: 25132531.CrossRefGoogle Scholar
13. Monterosso, JR, Luo, S. An argument against dual valuation system competition: cognitive capacities supporting future orientation mediate rather than compete with visceral motivations. J Neurosci Psychol Econ. 2010; 3(1): 114.CrossRefGoogle ScholarPubMed
14. Aron, AR, Fletcher, PC, Bullmore, ET, Sahakian, BJ, Robbins, TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci. 2003; 6(2): 115116.CrossRefGoogle ScholarPubMed
15. Dodds, CM, Morein-Zamir, S, Robbins, TW. Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging. Cereb Cortex. 2011; 21(5): 11551165.CrossRefGoogle ScholarPubMed
16. Harrison, BJ, Soriano-Mas, C, Pujol, J, etal. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. JAMA Psychiatry. 2009; 66(11): 11891200.Google ScholarPubMed
17. Brennan, BP, Rauch, SL, Jensen, JE, etal. A critical review of magnetic resonance spectroscopy studies of obsessive-compulsive disorder. Biol Psychiatry. 2013; 73(1): 2431.CrossRefGoogle ScholarPubMed
18. Ting, JT, Feng, G. Neurobiology of obsessive-compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Curr Opin Neurobiol. 2011; 21(6): 842848.CrossRefGoogle ScholarPubMed
19. Adler, CM, McDonough-Ryan, P, Sax, KW, etal. fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J Psychiatr Res. 2000; 34(4–5): 317324.CrossRefGoogle ScholarPubMed
20. Rauch, SL, Jenike, MA, Alpert, NM, etal. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. JAMA Psychiatry. 1994; 51(1): 6270.Google ScholarPubMed
21. van den Heuvel, OA, Veltman, DJ, Groenewegen, HJ, etal. Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis. JAMA Psychiatry. 2005; 62(8): 922933.Google ScholarPubMed
22. Fitzgerald, KD, Stern, ER, Angstadt, M, etal. Altered function and connectivity of the medial frontal cortex in pediatric obsessive-compulsive disorder. Biol Psychiatry. 2010; 68(11): 10391047.CrossRefGoogle ScholarPubMed
23. Cannistraro, PA, Makris, N, Howard, JD, etal. A diffusion tensor imaging study of white matter in obsessive-compulsive disorder. Depress Anxiety. 2007; 24(6): 440446.CrossRefGoogle ScholarPubMed
24. Gruner, P, Vo, A, Ikuta, T, etal. White matter abnormalities in pediatric obsessive-compulsive disorder. Neuropsychopharmacology. 2012; 37(12): 27302739.CrossRefGoogle ScholarPubMed
25. Everitt, BJ, Robbins, TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005; 8(11): 14811489.CrossRefGoogle ScholarPubMed
26. Weintraub, D, Siderowf, AD, Potenza, MN, etal. Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol. 2006; 63(7): 969973.CrossRefGoogle ScholarPubMed
27. Abosch, A, Gupte, A, Eberly, LE, etal. Impulsive behavior and associated clinical variables in Parkinson's disease. Psychosomatics. 2011; 52(1): 4147.CrossRefGoogle ScholarPubMed
28. Grant, JE, Donahue, CB, Odlaug, BL, etal. Imaginal desensitisation plus motivational interviewing for pathological gambling: randomised controlled trial. Br J Psychiatry. 2009; 195(3): 266267.CrossRefGoogle ScholarPubMed
29. Hodgins, DC, Stea, JN, Grant, JE. Gambling disorders. Lancet. 2011 26;378(9806): 18741884.CrossRefGoogle ScholarPubMed
30. Grant, JE, Odlaug, BL, Mooney, ME. Telescoping phenomenon in pathological gambling: association with gender and comorbidities. J Nerv Ment Dis. 2012; 200(11): 996998.CrossRefGoogle ScholarPubMed
31. Chambers, RA, Potenza, MN. Neurodevelopment, impulsivity, and adolescent gambling. J Gambl Stud. 2003; 19(1): 5384.CrossRefGoogle ScholarPubMed
32. Chamberlain, SR, Sahakian, BJ. The neuropsychiatry of impulsivity. Curr Opin Psychiatry. 2007; 20(3): 255261.CrossRefGoogle ScholarPubMed
33. Chamberlain, SR, Menzies, L, Hampshire, A, etal. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science. 2008; 321(5887): 421422.CrossRefGoogle ScholarPubMed
34. Goudriaan, AE, Oosterlaan, J, de Beurs, E, etal. Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction. 2006; 101(4): 534547.CrossRefGoogle ScholarPubMed
35. van Holst, RJ, van den Brink, W, Veltman, DJ, etal. Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci Biobehav Rev. 2010; 34(1): 87107.CrossRefGoogle Scholar
36. Lawrence, AJ, Luty, J, Bogdan, NA, etal. Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacology (Berl). 2009; 207(1): 163172.CrossRefGoogle ScholarPubMed
37. Petry, NM. Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. J Abnorm Psychol. 2001; 110(3): 482487.CrossRefGoogle ScholarPubMed
38. Potenza, MN, Leung, HC, Blumberg, HP, etal. An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. Am J Psychiatry. 2003; 160: 19901994.CrossRefGoogle ScholarPubMed
39. Grant, JE, Potenza, MN. Compulsive aspects of impulse-control disorders. Psychiatr Clin North Am. 2006; 29(2): 539551.CrossRefGoogle ScholarPubMed
40. Blaszczynski, A. Pathological gambling and obsessive compulsive spectrum disorders. Psychol Rep. 1999; 84: 107113.CrossRefGoogle ScholarPubMed
41. Frost, RO, Meagher, BM, Riskind, JH. Obsessive compulsive features in pathological lottery and scratch-ticket gamblers. J Gambl Stud. 2001; 17: 519.CrossRefGoogle ScholarPubMed
42. Goudriaan, AE, Oosterlaan, J, de Beurs, E, etal. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res. 2005; 23(1): 137151.CrossRefGoogle ScholarPubMed
43. Grant, JE, Chamberlain, SR, Odlaug, BL, etal. Memantine shows promise in reducing gambling severity and cognitive inflexibility in pathological gambling: a pilot study. Psychopharmacology (Berl). 2010; 212(4): 603612.CrossRefGoogle ScholarPubMed
44. Chamberlain, SR, Fineberg, NA, Blackwell, AD, etal. Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. Am J Psychiatry. 2006; 163(7): 12821284.CrossRefGoogle ScholarPubMed
45. Blanco, C, Potenza, MN, Kim, SW, etal. A pilot study of impulsivity and compulsivity in pathological gambling. Psychiatry Res. 2009; 167(1–2): 161168.CrossRefGoogle ScholarPubMed
46. Sanavio, E. Obsessions and compulsions: the Padua Inventory. Behav Res Ther. 1988; 26: 169177.CrossRefGoogle ScholarPubMed
47. Potenza, MN, Steinberg, MA, Skudlarski, P, etal. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. JAMA Psychiatry. 2003; 60: 828836.Google ScholarPubMed
48. de Ruiter, MB, Oosterlaan, J, Veltman, DJ, etal. Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. Drug Alcohol Depend. 2012; 121: 8189.CrossRefGoogle ScholarPubMed
49. de Grack, M, Enzi, B, Prosch, U, etal. Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli. Hum Brain Mapp. 2010; 31: 18021812.CrossRefGoogle Scholar
50. Miedl, SF, Peters, J, Buchel, C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012; 69: 177186.CrossRefGoogle ScholarPubMed
51. Kim, SJ, Kang, JI, Kim, CH. Temperament and character in subjects with obsessive-compulsive disorder. Compr Psychiatry. 2009; 50(6): 567572.CrossRefGoogle ScholarPubMed
52. Del Casale, A, Kotzalidis, GD, Rapinesi, C, etal. Functional neuroimaging in obsessive-compulsive disorder. Neuropsychobiology. 2011; 64(2): 6185.CrossRefGoogle ScholarPubMed
53. Chamberlain, SR, Blackwell, AD, Fineberg, NA, etal. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev. 2005; 29(3): 399419.CrossRefGoogle ScholarPubMed
54. Aron, AR, Robbins, TW, Poldrack, RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004; 8(4): 170177.CrossRefGoogle ScholarPubMed
55. Veale, DM, Sahakian, BJ, Owen, AM, etal. Specific cognitive deficits in tests sensitive to frontal lobe dysfunction in obsessive-compulsive disorder. Psychol Med. 1996; 26(6): 12611269.CrossRefGoogle ScholarPubMed
56. Ettelt, S, Ruhrmann, S, Barnow, S, etal. Impulsiveness in obsessive-compulsive disorder: results from a family study. Acta Psychiatr Scand. 2007; 115(1): 4147.CrossRefGoogle ScholarPubMed
57. Fontenelle, LF, Oostermeijer, S, Harrison, BJ, etal. Obsessive-compulsive disorder, impulse control disorders and drug addiction: common features and potential treatments. Drugs. 2011; 71(7): 827840.CrossRefGoogle ScholarPubMed
58. Kashyap, H, Fontenelle, LF, Miguel, EC, etal. “Impulsive compulsivity” in obsessive-compulsive disorder: a phenotypic marker of patients with poor clinical outcome. J Psychiatr Res. 2012; 46(9): 11461152.CrossRefGoogle ScholarPubMed
59. Denys, D, Mantione, M, Figee, M, etal. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. JAMA Psychiatry. 2010; 67(10): 10611068.Google ScholarPubMed
60. Grant, JE, Odlaug, BL, Chamberlain, SR. Neurocognitive response to deep brain stimulation for obsessive-compulsive disorder: a case report. Am J Psychiatry. 2011; 168(12): 13381339.CrossRefGoogle ScholarPubMed
61. Grant, JE, Odlaug, BL, Schreiber, LR. Pharmacological treatments in pathological gambling. Br J Clin Pharmacol. In press. DOI: doi: 10.1111/j.1365-2125.2012.04457.x.Google Scholar
62. Verbeeck, W, Tuinier, S, Bekkering, GE. Antidepressants in the treatment of adult attention-deficit hyperactivity disorder: a systematic review. Adv Ther. 2009; 26(2): 170184.CrossRefGoogle ScholarPubMed
63. Rosenberg, DR, Mirza, Y, Russell, A, etal. Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J Am Acad Child Adolesc Psychiatry. 2004; 43(9): 11461153.CrossRefGoogle ScholarPubMed
64. Pittenger, C, Bloch, MH, Williams, K. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther. 2011; 132(3): 314332.CrossRefGoogle Scholar
65. Chamberlain, SR, Robbins, TW. Noradrenergic modulation of cognition: therapeutic implications. J Psychopharmacol. In press.Google Scholar
66. Sansone, RA, Sansone, LA. SNRIs pharmacological alternatives for the treatment of obsessive compulsive disorder? Innov Clin Neurosci. 2011; 8(6): 1014.Google ScholarPubMed
67. Franklin, ME, Foa, EB. Treatment of obsessive compulsive disorder. Annu Rev Clin Psychol. 2011; 7: 229243.CrossRefGoogle ScholarPubMed
68. McConaghy, N, Armstrong, MS, Blaszczynski, A, etal. Controlled comparison of aversive therapy and imaginal desensitization in compulsive gambling. Br J Psychiatry. 1983; 142: 366372.CrossRefGoogle ScholarPubMed
69. Echeburua, E, Baez, C, Fernandez-Montalvo, J. Comparative effectiveness of three therapeutic modalities in the psychological treatment of pathological gambling: long-term outcome. Behavioural and Cognitive Psychotherapy. 1996; 24: 5172.CrossRefGoogle Scholar
70. Jimenez-Murcia, S, Aymamí, N, Gómez-Peña, M, etal. Does exposure and response prevention improve the results of group cognitive-behavioural therapy for male slot machine pathological gamblers? Br J Clin Psychol. 2012; 51: 5471.CrossRefGoogle ScholarPubMed