Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T02:59:08.540Z Has data issue: false hasContentIssue false

Adjunctive neuronavigated accelerated continuous theta-burst stimulation in obsessive-compulsive disorder: a randomized sham-controlled study

Published online by Cambridge University Press:  05 September 2022

Aniruddha Mukherjee
Affiliation:
Centre for Cognitive Neuroscience, Central Institute of Psychiatry, Ranchi, India
Pramod Kumar Kumre
Affiliation:
Department of Psychiatry, Central Institute of Psychiatry, Ranchi, India
Nishant Goyal
Affiliation:
Centre for Cognitive Neuroscience, Central Institute of Psychiatry, Ranchi, India
Sourav Khanra*
Affiliation:
Centre for Addiction Psychiatry, Central Institute of Psychiatry, Ranchi, India
*
*Author for correspondence: Sourav Khanra Email: psyksk.cip@gmail.com

Abstract

Background

Approximately 40% of patients treated for obsessive-compulsive disorder (OCD) do not respond to standard and second-line augmentation treatments leading to the exploration of alternate biological treatments. Continuous theta burst stimulation (cTBS) is a form of repetitive transcranial magnetic stimulation inducing more rapid and longer-lasting effects on synaptic plasticity than the latter. To the best of our knowledge, only one recent study and a case report investigated the effect of cTBS at the supplementary motor area (SMA) in OCD.

Objective

This study aimed to examine the effect of accelerated robotized neuronavigated cTBS over SMA in patients with OCD.

Methods

A total of 32 patients with OCD were enrolled and randomized into active and sham cTBS groups. For active cTBS stimulation, an accelerated protocol was used. Bursts of three stimuli at 50 Hz, at 80% of MT, repeated at 5 Hz were used. Daily 2 sessions of 900 pulses each, for a total of 30 sessions over 3 wk (weekly 10 sessions), were given. Yale–Brown Obsessive-Compulsive Rating Scale (YBOCS), Clinical Global Impressions scale (CGI), Hamilton Depression Rating Scale (HAM-D), and Hamilton Anxiety Rating Scale (HAM-A) were administered at baseline and at end of weeks 3 and 8.

Results

A total of 26 patients completed the study. Active cTBS group showed significant group × time effect in YBOCS obsession (P < .001, η2 = 0.288), compulsion (P = .004, η2 = 0.207), YBOCS total (P < .001, η2 = 0.288), CGI-S (P = .010, η2 = 0.248), CGI-C (P = .010, η2 = 0.248), HAM-D (P = .014, η2 = 0.224) than sham cTBS group.

Conclusions

Findings from our study suggest that adjunctive accelerated cTBS significantly improves psychopathology, severity of illness, and depression among patients with OCD. Future studies with larger sample sizes will add to our knowledge.

Type
Original Research
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Simpson, HB, Foa, EB, Liebowitz, MR, et al. Cognitive-behavioral therapy vs risperidone for augmenting serotonin reuptake inhibitors in obsessive-compulsive disorder: a randomized clinical trial. JAMA Psychiatry. 2013;70(11):11901199. doi:10.1001/jamapsychiatry.2013.1932.CrossRefGoogle Scholar
George, MS, Wassermann, EM, Kimbrell, TA, et al. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial. Am J Psychiatry. 1997;154(12):17521756. doi:10.1176/ajp.154.12.1752.CrossRefGoogle Scholar
Greenberg, BD, George, MS, Martin, JD, et al. Effect of prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a preliminary study. Am J Psychiatry. 1997;154(6):867869. doi:10.1176/ajp.154.6.867.Google Scholar
Fitzsimmons, SMDD, van der Werf, YD, van Campen, AD, et al. Repetitive transcranial magnetic stimulation for obsessive-compulsive disorder: a systematic review and pairwise/network meta-analysis. J Affect Disord. 2022;302:302312. doi:10.1016/j.jad.2022.01.048.CrossRefGoogle ScholarPubMed
Chamberlain, SR, Blackwell, AD, Fineberg, NA, Robbins, TW, Sahakian, BJ. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev. 2005;29(3):399419. doi:10.1016/j.neubiorev.2004.11.006.CrossRefGoogle Scholar
van den Heuvel, OA, Veltman, DJ, Groenewegen, HJ, et al. Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry. 2005;62(3):301309. doi:10.1001/archpsyc.62.3.301.CrossRefGoogle Scholar
Yücel, M, Harrison, BJ, Wood, SJ, et al. Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Arch Gen Psychiatry. 2007;64(8):946955. doi:10.1001/archpsyc.64.8.946.CrossRefGoogle Scholar
Williams, NR, Sudheimer, KD, Cole, EJ, et al. Accelerated neuromodulation therapy for obsessive-compulsive disorder. Brain Stimul. 2021;14(2):435437. doi:10.1016/j.brs.2021.02.013.CrossRefGoogle Scholar
Harika-Germaneau, G, Rachid, F, Chatard, A, et al. Continuous theta burst stimulation over the supplementary motor area in refractory obsessive-compulsive disorder treatment: a randomized sham-controlled trial. Brain Stimul. 2019;12(6):15651571. doi:10.1016/j.brs.2019.07.019.CrossRefGoogle Scholar
Gomes, PV, Brasil-Neto, JP, Allam, N, Rodrigues de Souza, E. A randomized, double-blind trial of repetitive transcranial magnetic stimulation in obsessive-compulsive disorder with three-month follow-up. J Neuropsychiatry Clin Neurosci. 2012;24(4):437443. doi:10.1176/appi.neuropsych.11100242.CrossRefGoogle Scholar
Mantovani, A, Simpson, HB, Fallon, BA, Rossi, S, Lisanby, SH. Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment-resistant obsessive-compulsive disorder. Int J Neuropsychopharmacol. 2010;13(2):217227. doi:10.1017/S1461145709990435.CrossRefGoogle Scholar
Hawken, ER, Dilkov, D, Kaludiev, E, Simek, S, Zhang, F, Milev, R. Transcranial magnetic stimulation of the supplementary motor area in the treatment of obsessive-compulsive disorder: a multi-site study. Int J Mol Sci. 2016;17(3):420. doi:10.3390/ijms17030420.CrossRefGoogle Scholar
Pelissolo, A, Harika-Germaneau, G, Rachid, F, et al. Repetitive transcranial magnetic stimulation to supplementary motor area in refractory obsessive-compulsive disorder treatment: a sham-controlled trial. Int J Neuropsychopharmacol. 2016;19(8):pyw025. doi:10.1093/ijnp/pyw025.CrossRefGoogle Scholar
Arumugham, SS, Vs, S, Hn, M, et al. Augmentation effect of low-frequency repetitive transcranial magnetic stimulation over presupplementary motor area in obsessive-compulsive disorder: a randomized controlled trial. J ECT. 2018;34(4):253257. doi:10.1097/YCT.0000000000000509.CrossRefGoogle Scholar
Dutta, P, Dhyani, M, Garg, S, et al. Efficacy of intensive orbitofrontal continuous theta burst stimulation (iOFcTBS) in obsessive compulsive disorder: a randomized placebo controlled study. Psychiatry Res. 2021;298:113784 doi:10.1016/j.psychres.2021.113784.CrossRefGoogle Scholar
Suppa, A, Huang, YZ, Funke, K, et al. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016;9(3):323335. doi:10.1016/j.brs.2016.01.006.CrossRefGoogle Scholar
Rehn, S, Eslick, GD, Brakoulias, V. A meta-analysis of the effectiveness of different cortical targets used in repetitive transcranial magnetic stimulation (rTMS) for the treatment of obsessive-compulsive disorder (OCD). Psychiatr Q. 2018;89(3):645665. doi:10.1007/s11126-018-9566-7.CrossRefGoogle Scholar
Zhou, DD, Wang, W, Wang, GM, Li, DQ, Kuang, L. An updated meta-analysis: short-term therapeutic effects of repeated transcranial magnetic stimulation in treating obsessive-compulsive disorder. J Affect Disord. 2017;215:187196. doi:10.1016/j.jad.2017.03.033.CrossRefGoogle Scholar
Wu, CC, Tsai, CH, Lu, MK, Chen, CM, Shen, WC, Su, KP. Theta-burst repetitive transcranial magnetic stimulation for treatment-resistant obsessive-compulsive disorder with concomitant depression. J Clin Psychiatry. 2010;71(4):504506. doi:10.4088/JCP.09l05426blu.CrossRefGoogle ScholarPubMed
Thomson, AC, Sack, AT. How to design optimal accelerated rTMS protocols capable of promoting therapeutically beneficial metaplasticity. Front Neurol. 2020;11:599918. doi:10.3389/fneur.2020.599918.CrossRefGoogle Scholar
World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Diagnostic Crietria for Research. Geneva, Switzerland: World Health Organization; 1992. https://apps.who.int/iris/handle/10665/37108 Accessed May 7, 2019.Google Scholar
Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23(1):5662. doi:10.1136/jnnp.23.1.56.CrossRefGoogle Scholar
Mandal, MK, Pandey, G, Singh, SK, Asthana, HS. Hand preference in India. Int J Psychol. 1992;27(6):433442. doi:10.1080/00207599208246907.CrossRefGoogle Scholar
Goodman, WK, Price, LH, Rasmussen, SA, et al. The yale-brown obsessive compulsive scale. I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46(11):10061011. doi:10.1001/archpsyc.1989.01810110048007.CrossRefGoogle Scholar
Guy, W. ECDEU assessment manual for psychopharmacology. US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute of Mental Health, Psychopharmacology Research Branch, Division of Extramural Research Programs; 1976.Google Scholar
Hamilton, M. The assessment of anxiety states by rating. Br J Med Psychol. 1959;32(1):5055. doi:10.1111/j.2044-8341.1959.tb00467.x.CrossRefGoogle Scholar
Rossi, S, Hallett, M, Rossini, PM, Pascual-Leone, A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):20082039. doi:10.1016/j.clinph.2009.08.016.CrossRefGoogle Scholar
Slotema, CW, Blom, JD, Hoek, HW, Sommer, IE. Should we expand the toolbox of psychiatric treatment methods to include repetitive transcranial magnetic stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J Clin Psychiatry. 2010;71(7):873884. doi:10.4088/JCP.08m04872gre.CrossRefGoogle Scholar
Herwig, U, Padberg, F, Unger, J, Spitzer, M, Schönfeldt-Lecuona, C. Transcranial magnetic stimulation in therapy studies: examination of the reliability of "standard" coil positioning by neuronavigation. Biol Psychiatry. 2001;50(1):5861. doi:10.1016/s0006-3223(01)01153-2.CrossRefGoogle Scholar
Rothwell, JC, Hallett, M, Berardelli, A, Eisen, A, Rossini, P, Paulus, W. Magnetic stimulation: motor evoked potentials. The international federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:97103.Google Scholar
Speer, AM, Kimbrell, TA, Wassermann, EM, et al. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry. 2000;48(12):11331141. doi:10.1016/s0006-3223(00)01065-9.CrossRefGoogle Scholar
Picard, N, Strick, PL. Imaging the premotor areas. Curr Opin Neurobiol. 2001;11(6):663672. doi:10.1016/s0959-4388(01)00266-5.CrossRefGoogle Scholar
Haber, SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26(4):317330. doi:10.1016/j.jchemneu.2003.10.003.CrossRefGoogle Scholar
Nyffeler, T, Wurtz, P, Lüscher, HR, et al. Extending lifetime of plastic changes in the human brain. Eur J Neurosci. 2006;24(10):29612966. doi:10.1111/j.1460-9568.2006.05154.x.CrossRefGoogle Scholar
Goldsworthy, MR, Pitcher, JB, Ridding, MC. The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex. Eur J Neurosci. 2012;35(1):125134. doi:10.1111/j.1460-9568.2011.07924.x.CrossRefGoogle Scholar
Bliss, TV, Gardner-Medwin, AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):357374. doi:10.1113/jphysiol.1973.sp010274.CrossRefGoogle Scholar
Abraham, WC, Mason, SE, Demmer, J, et al. Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience. 1993;56(3):717727. doi:10.1016/0306-4522(93)90369-q.CrossRefGoogle Scholar
Abraham, WC, Logan, B, Greenwood, JM, Dragunow, M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci. 2002;22(21):96269634. doi:10.1523/JNEUROSCI.22-21-09626.2002.CrossRefGoogle Scholar
Mantovani, A, Lisanby, SH, Pieraccini, F, Ulivelli, M, Castrogiovanni, P, Rossi, S. Repetitive transcranial magnetic stimulation (rTMS) in the treatment of obsessive-compulsive disorder (OCD) and Tourette’s syndrome (TS). Int J Neuropsychopharmacol. 2006;9(1):95100. doi:10.1017/S1461145705005729.CrossRefGoogle Scholar
Kang, JI, Kim, CH, Namkoong, K, Lee, CI, Kim, SJ. A randomized controlled study of sequentially applied repetitive transcranial magnetic stimulation in obsessive-compulsive disorder. J Clin Psychiatry. 2009;70(12):16451651. doi:10.4088/JCP.08m04500.CrossRefGoogle Scholar
Alonso, P, Pujol, J, Cardoner, N, et al. Right prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a double-blind, placebo-controlled study. Am J Psychiatry. 2001;158(7):11431145. doi:10.1176/appi.ajp.158.7.1143.CrossRefGoogle Scholar
Prasko, J, Pasková, B, Záleský, R, et al. The effect of repetitive transcranial magnetic stimulation (rTMS) on symptoms in obsessive compulsive disorder. A randomized, double blind, sham controlled study. Neuro Endocrinol Lett. 2006;27(3):327332.Google Scholar
Sachdev, PS, McBride, R, Loo, CK, Mitchell, PB, Malhi, GS, Croker, VM. Right versus left prefrontal transcranial magnetic stimulation for obsessive-compulsive disorder: a preliminary investigation. J Clin Psychiatry. 2001;62(12):981984. doi:10.4088/jcp.v62n1211.CrossRefGoogle Scholar
Loo, CK, Mitchell, PB. A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. J Affect Disord. 2005;88(3):255267. doi:10.1016/j.jad.2005.08.001.CrossRefGoogle Scholar
Oken, BS. Placebo effects: clinical aspects and neurobiology. Brain. 2008;131(Pt 11):28122823. doi:10.1093/brain/awn116.CrossRefGoogle Scholar
Braga, M, Barbiani, D, Emadi Andani, M, Villa-Sánchez, B, Tinazzi, M, Fiorio, M. The role of expectation and beliefs on the effects of non-invasive brain stimulation. Brain Sci. 2021;11(11):1526. doi:10.3390/brainsci11111526.CrossRefGoogle Scholar
Jones, BDM, Razza, LB, Weissman, CR, et al. Magnitude of the placebo response across treatment Modalities used for treatment-resistant depression in adults: a systematic review and meta-analysis. JAMA Netw Open. 2021;4(9):e2125531. doi:10.1001/jamanetworkopen.2021.25531.CrossRefGoogle Scholar
Chen, L, Chung, SW, Hoy, KE, Fitzgerald, PB. Is theta burst stimulation ready as a clinical treatment for depression? Expert Rev Neurother. 2019;19(11):10891102. doi:10.1080/14737175.2019.1641084.CrossRefGoogle Scholar
Petrosino, NJ, Wout-Frank, MV’, Aiken, E, et al. One-year clinical outcomes following theta burst stimulation for post-traumatic stress disorder. Neuropsychopharmacology. 2020;45(6):940946. doi:10.1038/s41386-019-0584-4.CrossRefGoogle Scholar
Supplementary material: File

Mukherjee et al. supplementary material

Tables S1-S2

Download Mukherjee et al. supplementary material(File)
File 24.6 KB