Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T21:15:38.541Z Has data issue: false hasContentIssue false

Surface Conductance and Electrokinetic Properties of Kaolinite Beds

Published online by Cambridge University Press:  01 July 2024

Philip B. Lorenz*
Affiliation:
Bartlesville Petroleum Research Center, Bureau of Mines, U.S. Department of the Interior, Bartlesville, Oklahoma
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A technique was developed for forming clay beds of uniform porosity between 48 and 62 per cent. The surface conductance and streaming potential of sodium kaolinite were determined over a range of values. Zeta potential as calculated from the classical formula was about - 30 mV at neutral pH and changed sign at pH 4. The surface conductivity of the sodium clay at various pH values was directly proportional to the zeta potential and from 12 to more than 30 times as large as the calculated electrokinetic surface conductivity. Similar measurements were made on kaolinite in the acid (hydrogen-aluminum) and calcium forms. The acid clay fitted the experimental correlation found for the sodium series, but the calcium clay, with less than one-tenth of the zeta potential of the sodium clay at neutral pH, had half its surface conductance. The results are interpreted as showing that exchangeable ions on kaolinite are mostly in a condensed layer on the surface where the mobility determines surface conductance. The surface mobilities for Na, Ca and H-Al are 20, 8 and 0 per cent of normal, respectively. Apparently hydrogen ion from the solution is very effective in replacing sodium, which exhibits its electrokinetic and conductive properties in proportion to its concentration on the surface.

Резюме

Резюме

;Разработана методика получения глинистых препаратов в виде слоев с однородной пористостью от 48 до 62%. Поверхностная проводимость и потенциал течения натриевого каолинита определялись в широких пределах их значений. Дзета-потенциал, вычисленный по классической формуле, составлял около- 30 mv при нейтральном значении рН и менял знак при рН 4. Поверхностная электропроводность натриевой глины при разных значениях рН была прямо пропорциональна дзета-потенциалу и превышала в 12–30 раз и более вы-численную электрокинетическую поверхностную электропроводность.

Аналогичные измерения были сделаны для кислой (водородно-алюминиевой) и кальциевой форм каолинита. Данные для кислой глины согласуются с экспериментальным соотношением, установленным для натриевых форм, но кальциевый каолинит, дзета-потенциал которого составлял менее чем 0,1 величины дзета-потенциала натриевой глины при нейтральном значении рН, обладает только половиной его поверхностной проводимости. По результатам экспериментов сделан вывод, что обменные ионы в каолините в основном находятся в кон-денсированном слое на поверхности, где их подвижность определяет поверхностную проводимость. Подвижности Na, Са и Н-Al поверхностного слоя соответственно составляют 20%, 8% и 0% от нормальной. Очевидно, ион водорода раствора очень эффективно замещает натрий, который обнаруживает электрокинетические свойства и свойство проводимости пропорционально его концентрации на поверхности.

Type
Research Article
Copyright
Copyright © 1969, The Clay Minerals Society

References

Bailou, E. Vernon (1955) Electroosmotic flow in homo- ionic kaolinite: J. Colloid Sci. 10, 450460.CrossRefGoogle Scholar
Bikerman, J.J. (1942) Electrokinetic equations from gels and the absolute magnitude of electrokinetic potentials: J. Phys. Chem. 46, 724730.CrossRefGoogle Scholar
Cornell University (1951) Fundamental Properties, Clay-Water Systems: Soil Solidification Research, Final Report, Vol. II.Google Scholar
Cremers, A. E. and Laudelot, H. (1966) Surface mobilities of cations in clays: Proc. Soil Sci. Soc. Am. 30, 570576.CrossRefGoogle Scholar
Dodd, Charles G., Davis, James W. and Pidgeon, Frances D. (1951) Measurement of specific surface areas of nonporous powders by a pressure-decline liquid-permeability method: J. Phys. Chem. 55, 684698.CrossRefGoogle ScholarPubMed
Eastman, E. D. (1920) Conductivity and frequency: J. Am. Chem. Soc. 42, 16481655.CrossRefGoogle Scholar
Foy, Walter L. and Martell, Arthur E. (1948) An improved conductance bridge: Rev. Sci. Instrum. 19, 628632.CrossRefGoogle Scholar
Ghosh, B. N., Choudbury, B. K. and De, P. K. (1954) Evaluation of true zeta potential of the particles of glass forming a diaphragm from measurements of streaming potential: Trans. Faraday Soc. 50, 955958.CrossRefGoogle Scholar
Holmes, H. F., Shoup, Charles S. Jr. and Secoy, C. H. (1965) Electrokinetic phenomena at the thorium oxide-aqueous solution interface: J. Phys. Chem. 69, 31483155.CrossRefGoogle Scholar
James, S. D. (1966) Electrochemistry of the interface between some aluminosilicate crystals and salt solutions. I. Surface conductivity: J. Phys. Chem. 70, 34473454.CrossRefGoogle Scholar
Johansen, Robert T. and Dunning, H. N. (1959) Water- vapor adsorption on clays: Clays and Clay Minerals 6, 249278.Google Scholar
Kedem, O. and Katchalsky, A., (1963) Permeability of composite membranes. Part 3. Series array of elements: Trans. Faraday Soc. 59, 19411953.CrossRefGoogle Scholar
Keenan, A. G., Mooney, R. W. and Wood, L. A. (1951) The relation between exchangeable ions and water adsorption on kaolinite: J. Phys. Chem. 55, 14621474.CrossRefGoogle Scholar
Michaels, Alan S. and Lin, C. S. (1954) Permeability of kaolinite: Ind. Eng. Chem. 46, 12391246.CrossRefGoogle Scholar
Michaels, A. S. and Lin, C. S. (1955) Effects of counter-electroosmosis and sodium ion exchange on permeability of kaolinite: Ind. Eng. Chem. 47, 12491253.CrossRefGoogle Scholar
M.I. T., October 1953 Soil Stabilization Lab. Rep. VI.Google Scholar
Oldham, I. V., Young, F. J. and Osterie, J. F. (1963) Streaming potential in small capillaries: J. Colloid Sci. 18, 328336.CrossRefGoogle Scholar
Overbeek, J. Th. G. (1952) In H. R. Kruyt (Editor) Colloid Science, Vol. I., p. 235. Elsevier, Amsterdam .Google Scholar
Overbeek, J. Th. G. and Wijga, P. W. O. (1946) On electro-osmosis and streaming-potentials in diaphragms: Rec. Trav. Chim. 65, 556563.CrossRefGoogle Scholar
Rutgers, A. J. and De Smet, M. (1953) Nat. Bur. Std. Circular 524, p. 263.Google Scholar
Smith, R. W. and Narimatsu, Y. (1967): Mining Engr. 19, 34 (abstr.).Google Scholar
Street, N. (1956) The rheology of kaolinite suspensions: Australian J. Chem. 9, 467479.CrossRefGoogle Scholar
Street, N. and Buchanan, A. S. (1958) The ζ-potential of kaolinite particles: Australian J. Chem. 9, 450466.CrossRefGoogle Scholar
Street Norman, J. (1958) Surface conductivity of an anion-exchange resin: J. Phys. Chem. 62, 889890.CrossRefGoogle Scholar
Street, Norman J. (1960) Surface conductance of suspended particles: J. Phys. Chem. 64, 173174.CrossRefGoogle Scholar
Tikhomolova, K. P., (1960) Electroosmosis and streaming potential on two-layer powder membranes: Vestn. Leningr. Univ. 15, no. 4. Ser. Fiz. i Khim. no. 1, 106116.Google Scholar
Urban, Frank, White, H. L. and Stassner, E. A. (1935) Contribution to the theory of surface conductivity at solid-liquid interfaces: J. Phys. Chem. 39, 311330.CrossRefGoogle Scholar
Van Olphen, H. (1957) Surface conductance of various ion forms of bentonite in water and the electrical double layer: J. Phys. Chem. 61, 12761280.CrossRefGoogle Scholar
Winsauer, W. A., Shearin, E. M. Jr., Masson, P. H. and Williams, M. (1952) Resistivity of brine-saturated sands in relation to pore geometry: Bull. Am. Assoc. Petrol. Geol. 36, 253277.Google Scholar