Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T12:07:58.384Z Has data issue: false hasContentIssue false

Structure of Some Allophanes from New Zealand

Published online by Cambridge University Press:  01 July 2024

Roger Lyndhurst Parfitt
Affiliation:
Soil Bureau, Department of Scientific and Industrial Research, Lower Hutt, New Zealand
Teruo Hemni
Affiliation:
Ehime University, Matsuyama, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Allophane samples from soils, pumice, and stream beds have been studied by electron optical, infrared absorption, X-ray fluorescence, gas chromatography, and phosphate adsorption methods. The allophane particles were hollow spherules or polyhedra 35 and 50 Å in diameter with molar Al/Si ratios close to 2.0. The thickness of the wall of the spherules was estimated to be 7 Å. For the pumice allophanes, the wall was largely composed of imogolite structural units (OH)3Al2O3SiOH. Defects or pores were present in the wall and probably were the sites where phosphate was adsorbed. It is suggested that these allophanes with molar Al/Si ratios close to 2.0 should be called “proto-imogolite” allophane.

Two soil allophanes had a similar structure to the allophane from Stratford pumice, but small amounts of layer silicates, including halloysite, were also present in the soil samples, as indicated by infrared bands at 470, 1030, and 1100 cm−1. The allophane from the stream bed at Silica Springs had an infrared spectrum similar to feldspathoids, and it did not have the imogolite structure.

Резюме

Резюме

Образцы аллофана из почь, пемзы, и русел рек изучались методами электронной оптики, инфракрасной адсорбции, рентгеновской флуоресценции, газовой хроматографии, и фосфатной адсорбции. Аллофанновые частицы представляли собой полые сферы или многогранники с диаметрами 35 и 50 Å и молярными отношениями Al/Si, близкими к 2,0. Было установлено, что толщина стенок сфер пемзовых аллофанов равна 7,0 Å. Стенки в основном составлены из имого-литовных структурных элементов (OH)3Al2O3SiOH. B стенках наблюдались дефекты или поры, которые вероятно служили местами адсорбции фосфатов. Предполагается, что эти аллофаны с молярными отношениями Al/Si, близкими к 2,0, должны называться «прото-имоголитовые» аллофаны.

Два почвенных аллофана имеют сходную структуру с аллофаном из Стратфордской пемзы, но небольшие количества слойных силикатов, включая галлуазиты, также присутствовали в почвенных образцах, что определяется инфракрасными полосами при 470, 1030, и 1100 см−1. Аллофан из русла потока в Силика Спрингс имел инфракрасный спектр, подобный спектру фельдшпатойдов, и не имел имоголитовой структуры. [N.R.]

Resümee

Resümee

Allophanproben aus Böden, Bims, und Flußbetten wurden mittels Elektronenoptik, Infrarotabsorption, Röntgenfluoreszenz, Gaschromatographie, und Phosphatadsorptionsmethoden untersucht. Die Allophanteilchen waren hohle Kügelchen oder Polyeder mit Durchmessern von 35–50 Å und einem molaren Al/Si-Verhältnis nahe 2,0. Die Dicke der Kugelwand wurde bei den Allophanen aus Bims auf etwa 7 Å geschätzt, wobei die Wand hauptsächlich aus Einheiten mit Imogolitstruktur (OH)3Al2O3SiOH bestand. Fehler oder Poren traten in den Wänden auf und waren wahrscheinlich die Stellen, wo Phosphat adsorbiert wurde. Es wird vorgeschlagen, diese Allophane mit molaren Al/Si-Verhältnissen nahe 2,0 als “Proto-Imogolit” Allophane zu bezeichnen.

Zwei Allophane aus Böden hatten eine Struktur ähnlich den Allophanen aus dem Stratford Bims, aber geringe Mengen von Schichtsilikaten einschließlich Halloysit waren in den Bodenproben enthalten, wie die Infrarotbanden bei 470, 1030, und 1100 cm−1 zeigen. Der Allophan aus dem Flußbett bei Silica Springs hatte ein Infrarotspektrum ähnlich dem von Feldspatvertretern und zeigte keine Imogolitstruktur. [U.W.]

Résumé

Résumé

Des échantillons d'allophane de sols, de pierre ponce, et de lits de ruisseaux ont été étudiés par des méthodes optiques à électrons, d'adsorption infrarouge, de fluorescence aux rayons-X, de chromatographic de gaz, et d'adsorption de phosphate. Les particules d'allophane sont des sphérules creuses ou des polyèdres de 35 et 50 Å de diamètre avec des proportions molaires Al/Si près de 2,0. L’épaisseur de la paroi des sphérules était estimée être 7 Å, pour les allophanes de pierre ponce, la paroi était en grande partie formée d'unités structurales d'imogolite (OH)3Al2O3SiOH. Des défauts ou des pores étaient présents dans la paroi et étaient probablement les sites d'adsorption de phosphate. On a suggéré que les allophanes avec des proportions molaires Al/Si près de 2,0 soient appellées allophanes “proto-imogolite.”

Deux allophanes du sol avaient une structure semblable à l'allophane de la pierre ponce de Stratford, mais de petites quantités de silicates de couches comprenant de l'halloysite étaient aussi présentes dan les échantillons du sol, indiquées par les bandes infrarouges à 470, 1030, et 1100 cm−1. L'allophane du lit de ruisseau à Silica Springs avait un spectre infrarouge semblable à celui des feldspathoides, et n'avait pas la structure de l'imogolite. [D.J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

References

Cox, J. E., (1968) Evaluation of climate and its correlation with soil groups Soils of New Zealand, part I. New Zealand Dep. Sci. Ind. Res. Soil Bur. Bull. 26 3344.Google Scholar
Cradwick, P. D. G. Farmer, V. C. Russell, J. D. Masson, C. R. Wada, K. and Yoshinga, N., (1972) Imogolite, ahy-drated aluminum silicate of tubular structure Nature Phys. Sci. 240 187189.CrossRefGoogle Scholar
Farmer, V. C. Fraser, A. R. Russell, J. D. and Yoshinaga, N., (1977) Recognition of imogolite structures in allophanic clays by infrared spectroscopy Clay Miner. 12 5557.CrossRefGoogle Scholar
Farmer, V. C. Fraser, A. R. Tait, J. M. Palmieri, F. Violante, P. Nakai, M. and Yoshinaga, N., (1978) Imogolite and proto-imogolite in an Italian soil developed on volcanic ash Clay Miner. 13 271274.CrossRefGoogle Scholar
Farmer, V. C. Fraser, A. R., Mortland, M. M. and Farmer, V. C., (1979) Synthetic imogolite, a tubular hydroxyaluminum silicate Proc. Int. Clay Conf., Oxford, 1978 Amsterdam Elsevier 547553.Google Scholar
Farmer, V. C. Fraser, A. R. and Tait, J. M., (1979) Characterisation of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy Geochim. Cosmochim. Acta 43 14171420.CrossRefGoogle Scholar
Fey, M. V. and Le Roux, J., (1977) Properties and quantitative estimation of poorly crystalline components in sesquioxidic soil clays Clays & Clay Minerals 25 285294.CrossRefGoogle Scholar
Götz, J. and Masson, C. R., (1970) Trimethylsilyl derivatives for the study of silicate structures. I. A direct method of trimethylsilylation J. Chem. Soc. A. 26832686.Google Scholar
Götz, J. and Masson, C. R., (1971) Trimethylsilyl derivatives for the study of silicate structures. II. Orthosilicate, pyrosilicate, and ring structures J. Chem. Soc. A. 686688.Google Scholar
Henmi, T. and Wada, K., (1974) Surface acidity of imogolite and allophane Clay Miner. 10 231245.CrossRefGoogle Scholar
Henmi, T. and Wada, K., (1976) Morphology and composition of allophane Amer. Mineral. 61 379390.Google Scholar
Higashi, T. and Ikeda, H., (1974) Dissolution of allophane by acid oxalate solution Clay Sci. 4 205212.Google Scholar
Kitagawa, Y., (1973) Substitution of aluminum by iron in allophane Clay Sci. 4 151154.Google Scholar
Parfitt, R. L., (1978) Anion adsorption by soils and soil materials Adv. Agron. 30 150.Google Scholar
Parfitt, R. L. Russell, J. D. and Farmer, V. C., (1976) Confirmation of the surface structures of goethite (a-FeOOH) and phosphated goethite by infrared spectroscopy J. Chem. Soc. Faraday. I. 72 10821087.CrossRefGoogle Scholar
Parfitt, R. L. Fraser, A. R. Russell, J. D. and Farmer, V. C., (1977) Adsorption on hydrous oxides. II. Oxalate, ben-zoate and phosphate on gibbsite J. Soil Sci. 28 4047.CrossRefGoogle Scholar
Paterson, E., (1977) Specific surface area and pore structure of allophanic soil clays Clay Miner. 12 19.CrossRefGoogle Scholar
Perrott, K. W. Smith, B. F. L. and Inkson, R. H. E., (1976) The reaction of fluoride with soils and soil minerals J. Soil Sci. 27 5867.CrossRefGoogle Scholar
Russell, J. D. McHardy, W. J. and Fraser, A. R., (1969) Imogolite: a unique aluminosilicate Clay Miner. 8 6799.CrossRefGoogle Scholar
Russell, M. Parfitt, R. L. and Claridge, G. G. C., (1980) Estimation of the amount of allophane and other minerals in the clay fraction of an Egmont loam profile Aust. J. Soil Res. .CrossRefGoogle Scholar
Saigusa, M. Shoji, S. and Kato, T., (1978) Origin and nature of halloysite in Ando soils from Towada tephra, Japan Geoderma 20 115129.CrossRefGoogle Scholar
Wada, K., Dixon, J. B. and Weed, S. B., (1977) Allophane and imogolite Minerals in the Soil Environment Madison, Wisconsin Amer. Soc. Agron..Google Scholar
Wada, S. and Wada, K., (1977) Density and structure of allophane Clay Miner. 12 289298.CrossRefGoogle Scholar
Wells, N. Childs, C. W. and Downes, C. J., (1977) Silica Springs, Tongariro National Park, New Zealand—analyses of the spring water and characterisation of the alumino-sil-icate deposit Geochim. Cosmochim. Acta 41 14971506.CrossRefGoogle Scholar