Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T07:52:36.938Z Has data issue: false hasContentIssue false

Stress-Induced Alteration of Sudoite: Structural and Chemical Modifications

Published online by Cambridge University Press:  01 January 2024

María Dolores Ruiz Cruz*
Affiliation:
Facultad de Ciencias, Campus de Teatinos, 29071 Málaga, Spain
María Dolores Rodríguez Ruiz
Affiliation:
Facultad de Ciencias, Campus de Teatinos, 29071 Málaga, Spain
Carlos Sanz de Galdeano
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Facultad de Ciencias, 18071 Granada, Spain
*
* E-mail address of corresponding author: mdruiz@uma.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this study was to investigate the structural and chemical modifications of phyllosilicates that occur under natural conditions, using the progressive deformation of chlorite (sudoite) present in quartz-rich veins from the Internal Zone of the Rif range (Morocco) as the model system. Signs of chlorite deformation include kinks, chevron-like folds, and fractures. The samples also contain later, undeformed grains, which sealed the fractures or grew with (001) perpendicular to the compressive stress. Deformation-induced structural changes consist mainly of basal cleavages associated with ordered replacement of brucite sheets by hydrated layers, thus leading to irregular microdomains of mixed-layer chlorite-vermiculite and sudoite. Such structural modifications represent a mechanism for accommodating the compressive stress. Structural changes were accompanied by minor chemical ones, which lead from di,tri-chlorite (sudoite) to phases with a more trioctahedral character (mixed-layer chlorite-vermiculite). The hydration reaction occurred throughout a topotactic replacement of the pre-existing sudoite grains. Later, undeformed grains consist of mixed-layer chlorite-vermiculite intergrown with retrogressive kaolinite and minor Fe oxide, and are interpreted as having formed through a dissolution-precipitation process, during deformation. Retrogression of sudoite probably occurred during the latest stage of exhumation, in low-temperature conditions.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Amouric, M., 1987 Growth and deformation defects in phyllosilicates as seen by HRTEM Acta Crystallographica B43 5763 10.1107/S0108768187098306.CrossRefGoogle Scholar
Anceau, A., 1992 Sudoite in some Visean (lower Carboniferous) K-bentonites from Belgium Clay Minerals 27 283292 10.1180/claymin.1992.027.3.02.CrossRefGoogle Scholar
Aspandiar, M.F. and Eggleton, R.A., 2002a Weathering of chlorite. I. Reactions and products in microsystems controlled by the primary minerals Clays and Clay Minerals 50 685698 10.1346/000986002762090227.CrossRefGoogle Scholar
Aspandiar, M.F. and Eggleton, R.A., 2002b Weathering of chlorite. II. Reactions and products in microsystems controlled by solution avenues Clays and Clay Minerals 50 699709 10.1346/000986002762090100.CrossRefGoogle Scholar
Azañón, J.M. and Goffé, B., 1997 Ferro- and magnesiocarpholite assemblages as a record of high-P, low-T metamorphism in the Central Alpujárrides, Betic Cordillera (SE Spain) European Journal of Mineralogy 9 10351051 10.1127/ejm/9/5/1035.CrossRefGoogle Scholar
Azañón, J.M. García-Dueñas, V. and Goffé, B., 1992 High pressure mineral assemblages in the Trevenque unit (Central Alpujárrides, Andalucía) Geogaceta 11 8184.Google Scholar
Bailey, S.W. and Lister, J.S., 1989 Structures, compositions and X-ray identification of dioctahedral chlorites Clays and Clay Minerals 37 193202 10.1346/CCMN.1989.0370301.CrossRefGoogle Scholar
Banfield, J.F. and Murakami, T., 1998 Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chloritevermiculite American Mineralogist 83 348357 10.2138/am-1998-3-419.CrossRefGoogle Scholar
Baronnet, A. and Olives, J., 1983 The geometry of micas around kink band boundaries I. Crystallographic model. Tectonophysics 91 359373 10.1016/0040-1951(83)90050-1.CrossRefGoogle Scholar
Bell, I.A. and Wilson, C.J.L., 1981 Deformation of biotite and muscovite: TEM microstructure and deformation model Tectonophysics 78 201228 10.1016/0040-1951(81)90014-7.CrossRefGoogle Scholar
Bell, I.A. and Wilson, C.J.L., 1986 TEM observation of defects in biotite and their relationships to polytypism Bulletin de Minéralogie 109 163170.CrossRefGoogle Scholar
Bell, I.A. Wilson, C.J.L. McLaren, A.C. and Etheridge, M.A., 1986 Kinks in mica: role of dislocations and (001) cleavage Tectonophysics 127 4965 10.1016/0040-1951(86)90078-8.CrossRefGoogle Scholar
Bouybaouène, M.L., 1993 Étude pétrologique des metapéli tes Sebtides supérieures, Rif Interne, Maroc: Une évolution mé tamorphique de haute pression PhD thesis, Université Mohammmed V. Rabat .Google Scholar
Bouybaouène, M.L. Goffé, B. and Michard, A., 1995 High-pressure, low-temperature metamorphism in the Sebtide nappes, northern Rif, Morocco Geogaceta 17 117119.Google Scholar
Cliff, G. and Lorimer, G.W., 1975 The quantitative analysis of thin specimens Journal of Microscopy 103 203207 10.1111/j.1365-2818.1975.tb03895.x.CrossRefGoogle Scholar
Didon, J. Durand-Delga, M. and Kornprobst, J., 1973 Homologies géologiques entre les deux rives du Détroit de Gibraltar Bulletin de la Societée Géologique de France 15 77105 10.2113/gssgfbull.S7-XV.2.77.CrossRefGoogle Scholar
Etheridge, M.A. Hobbs, B.E. and Paterson, M.S., 1973 Experimental deformation of single crystals of biotite Contributions to Mineralogy and Petrology 38 2136 10.1007/BF00371724.CrossRefGoogle Scholar
Goffé, B. Michard, A. García-Dueñas, V. González-Lodeiro, F. Monié, P. Campos, J. Galindo-Zaldívar, J. Jabaloy, A. Martínez-Martínez, J.M. and Simancas, J.F., 1989 First evidence of high-pressure, low-temperature metamorphism in the Alpujárride nappes, Betic Cordillera (SE Spain) European Journal of Mineralogy 1 139142 10.1127/ejm/01/1/0139.CrossRefGoogle Scholar
Jiménez-Millán, J. Vázquez, M. and Velilla, N., 2007 Deformation-promoted defects and retrograde chloritization of biotite in slates from a shear zone, southern Iberian massif, SE Spain Clays and Clay Minerals 55 285295 10.1346/CCMN.2007.0550305.CrossRefGoogle Scholar
Knipe, R.J., 1981 The interaction of deformation and metamorphism in slates Tectonophysics 78 249272 10.1016/0040-1951(81)90016-0.CrossRefGoogle Scholar
Kornprosbt, J. (1971–1974) Contribution à l’étude pé trographique et structurale de la zone interne du Rif (Maroc septentrional). Notes Mémoires Service Géologique Maroc, 251, 256 pp.Google Scholar
Kretz, R., 1994 Metamorphic Crystallization Chichester, UK & New York John Wiley & Sons.Google Scholar
Krumm, S., 1999 Simulation of XRD patterns from oriented clay minerals with WinStruct Computers & Geoscience 25 501509 10.1016/S0098-3004(98)00155-1.CrossRefGoogle Scholar
Michard, A. Goffé, B. Bouybaouène, M.L. and Saddiqi, O., 1997 Late Hercynian-Mesozoic thinning in the Alboran domain: metamorphic data from the northern Rif, Morocco Terra Nova 9 171174 10.1046/j.1365-3121.1997.d01-24.x.CrossRefGoogle Scholar
Negro, F. Beyssac, O. Goffé, B. and Saddiqi, O. L., 2006 Thermal structure of the Alboran domain in the Rif (northern Morocco) and the western Betics (southern Spain). Constraints from Raman spectroscopy of carbonaceous material Journal of Metamorphic Geology 24 309327 10.1111/j.1525-1314.2006.00639.x.CrossRefGoogle Scholar
Olives, J. Amouric, M. Fouquet, C.D. and Baronnet, A., 1983 Interlayering and interlayer slip in biotite as seen by HRTEM American Mineralogist 68 754758.Google Scholar
Ooteman, A. Ferrow, E.A. and Lindh, A., 2003 An electron microscopy study of deformation microstructures in granitic mylonites from southwestern Sweden, with special emphasis on the micas Mineralogy and Petrology 78 255268 10.1007/s00710-002-0236-x.CrossRefGoogle Scholar
Reynolds, R.C., 1985 NEWMOD - A computer program for calculation of one-dimensional X-ray diffraction patterns of mixed-layered clays .Google Scholar
Ruiz Cruz, M.D. and Sanz de Galdeano, C., 2005 Compositional and structural variation of sudoite from the Betic Cordillera (Spain): A TEM/AEM study Clays and Clay Minerals 53 639652 10.1346/CCMN.2005.0530610.CrossRefGoogle Scholar
Ruiz Cruz, M.D. Sanz de Galdeano, C. Alvarez-Valero, A. Rodríguez Ruiz, M.D. and Novak, J., 2010 Pumpellyite and coexisting minerals in metapelites and veins from the Federico units in the Internal Zone of the Rif, Spain The Canadian Mineralogist 48 155175 10.3749/canmin.48.1.183.CrossRefGoogle Scholar
Sánchez-Navas, A. and Galindo-Zaldívar, J., 1993 Alteration and deformation microstructures of biotite from plagioclaserich dykes (Ronda Massif, S. Spain) European Journal of Mineralogy 5 245256 10.1127/ejm/5/2/0245.CrossRefGoogle Scholar
Sanz de Galdeano, C. Andreo, B. García-Tortosa, F.J. and López-Garrido, A.C., 2001 The Triassic palaeogeographic transition between the Alpujárride and Maláguide complexes. Betic-Rif Internal Zone (S. Spain, N. Morocco) Palaeogeography, Palaeoclimatology, Palaeoecology 167 157173 10.1016/S0031-0182(00)00236-4.CrossRefGoogle Scholar
Schneider, H., 1978 Investigations on the deformation of experimentally stock-loaded biotites using X-ray single crystal diffraction techniques Mineralogical Magazine 42 4144 10.1180/minmag.1978.042.321.05.CrossRefGoogle Scholar
Sugimori, H. Iwatsuki, T. and Murakami, T., 2008 Chlorite and biotite weathering, Fe2+-rich corrensite formation, and Fe behaviour under low PO2 conditions and their implication for Precambrian weathering American Mineralogist 93 10801089 10.2138/am.2008.2663.CrossRefGoogle Scholar
Vernon, R.H., 1977 Microfabric of mica aggregates in partly recrystallized biotite Contributions to Mineralogy and Petrology 61 176185 10.1007/BF00374366.CrossRefGoogle Scholar
Vidal, O. Goffé, B. and Theye, T., 1992 Experimental investigation of the stability of sudoite and magnesiocarpholite and calculation of a petrogenetic grid for the system FeO-MgO-Al2O3-SiO2-H2O Journal of Metamorphic Geology 10 603614 10.1111/j.1525-1314.1992.tb00109.x.CrossRefGoogle Scholar
Zeck, H.P., 2004 Rapid exhumation in the alpine belt of the Betic-Rif (W Mediterranean): Tectonic extrusion Pure and Applied Geophysics 161 477487 10.1007/s00024-003-2459-0.CrossRefGoogle Scholar