Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T00:56:59.316Z Has data issue: false hasContentIssue false

Simulations of Interlayer Methanol in Ca- and Na-Saturated Montmorillonites Using Molecular Dynamics

Published online by Cambridge University Press:  28 February 2024

Marco Pintore
Affiliation:
Laboratory of Chemometrics & BioInformatics, University of Orléans, B.P. 6759, 45067, Orléans Cedex 2, France
Salvatore Deiana
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologiche Agroalimentari, Università di Sassari, V. le Italia 39, I-07100 Sassari, Italy
Pierfranco Demontis
Affiliation:
Dipartimento di Chimica, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
Bruno Manunza
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologiche Agroalimentari, Università di Sassari, V. le Italia 39, I-07100 Sassari, Italy
Giuseppe Baldovino Suffritti
Affiliation:
Dipartimento di Chimica, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
Carlo Gessa
Affiliation:
Istituto di Chimica Agraria, Università di Bologna, V. le Berti-Pichat 10, 1-40127 Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Molecular dynamics computer simulations were used to study methanol molecules confined between the layers of 2:1 phyllosilicates. The model systems are based on natural Ca- and Na-rich montmorillonites. Data from the literature and determined by fitting the calculated layer spacing to experimental values were employed to obtain interactions between the charged 2:1 layers and the solvent molecules. The montmorillonite surface atoms were held rigid and the methyl group in the methanol molecule was represented by a soft Lennard-Jones sphere. Electrostatic interactions were determined by the Ewald sum method, whereas the van der Waals interactions were described by a Lennard-Jones potential. Comparison of our results with diffraction data indicates a good reproduction of the layer spacing. After the initial solvent layer forms, additional solvent layers form only after previous layers are complete. Each Ca2+ and Na+ ion in the monolayer has four and two methanol molecules, respectively, in the first solvation shell, whereas the solvation shell in the multilayer contains six and four methanol molecules, respectively. This agrees well with experimental data.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Allen, M.P. and Tildesley, D.J., 1987 Computer Simulations of Liquids Oxford, England Clarendon Press.Google Scholar
Annabi-Bergaya, E. Cruiz, M.I. Gatineau, L. and Fripiat, J.J., 1979 Adsorption of alcohols by smectites: I. Distinction between internal and external surfaces Clay Minerals 14 249258 10.1180/claymin.1979.014.4.01.CrossRefGoogle Scholar
Annabi-Bergaya, R. Cruiz, M.I. Gatineau, L. and Fripiat, J.J., 1980 Adsorption of alcohols by smectites: II. Role of the exchange cations Clay Minerals 15 219223 10.1180/claymin.1980.015.3.02.CrossRefGoogle Scholar
Annabi-Bergaya, F. Cruz, M.I. Gatineau, L. and Fripiat, J.J., 1980 Adsorption of alcohols by smectites: III. Nature of the bonds Clay Minerals 15 225237 10.1180/claymin.1980.015.3.03.CrossRefGoogle Scholar
Annabi-Bergaya, F. Cruz, M.I. Gatineau, L. and Fripiat, J.J., 1981 Adsorption of alcohols by smectites: IV. Models Clay Minerals 16 115122 10.1180/claymin.1981.016.1.09.CrossRefGoogle Scholar
Boyd, S.A. and Mortland, M.M., 1985 Dioxin radical formation and polimerization on Cu(II)-smectite Nature 316 532535 10.1038/316532a0.CrossRefGoogle Scholar
Chang, E. C. Skipper, N.T. and Sposito, G., 1995 Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates Langmuir 11 27342741 10.1021/la00007a064.CrossRefGoogle Scholar
Delville, A., 1993 Structure and properties of confined liquids: A molecular model of the clay-water interface Journal of Physical Chemistry 97 97039712 10.1021/j100140a029.CrossRefGoogle Scholar
Eltantawy, I.M. and Arnold, P.W., 1974 Ethylene glycol sorption by homoionic montmorillonites Journal of Soil Science 25 99110 10.1111/j.1365-2389.1974.tb01107.x.CrossRefGoogle Scholar
Ferrano, M. Haughney, M. McDonald, I.R. and Klein, M.L., 1990 Molecular-dynamics simulation of aqueous mixtures: Methanol, acetone, and ammonia Journal of Chemical Physics 93 51565166 10.1063/1.458652.CrossRefGoogle Scholar
Grandjean, J. and Laszlo, P., 1989 Deuterium nuclear magnetic resonance studies of water molecules restrained by their proximity to a clay surface Clays and Clay Minerals 37 403408 10.1346/CCMN.1989.0370503.CrossRefGoogle Scholar
Haughney, M. Ferrano, M. and McDonald, I.R., 1987 Molecular-dynamics simulation of liquid methanol Journal of Physical Chemistry 91 49344940 10.1021/j100303a011.CrossRefGoogle Scholar
Keldsen, G.L. Nicholas, J.B. Carrado, K.A. and Winans, R.E., 1994 Molecular modeling of the enthalpies of adsorption of hydrocarbons on smectite clay Journal of Physical Chemistry 98 279284 10.1021/j100052a047.CrossRefGoogle Scholar
Lanson, B., 1997 Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals Clays and Clay Minerals 2 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
Mackenzie, R.C. Mitchell, B.D. and Mackenzie, R.C., 1972 Soils Differential Thermal Analysis London Academic Press 267298.Google Scholar
Pamar-Robert, A. Khirat-Bensaada, M. and Robert, L., 1989 Insertion d’alcools par la montmorillonite: Étude à partir des isothermes d’adsorption composites en phase liquide Bulletin de la Société Chimique Française 5 579590.Google Scholar
Rappé, A.K. Casewit, C.J. Colwell, K.S. Goddard, W.A. III and Skiff, W.M., 1992 UFF, A full periodic table force field for molecular mechanics and molecular-dynamics simulations Journal of the American Chemical Society 114 1002410035 10.1021/ja00051a040.CrossRefGoogle Scholar
Sato, H. Yamagishi, A. Naka, K. and Kato, S., 1996 Monte Carlo simulations on intercalation of tris(1,10-phenantro-line)metal(II) by saponite clay Journal of Physical Chemistry 100 17111717 10.1021/jp950768j.CrossRefGoogle Scholar
Skipper, N.T. Chang, E.C. and Sposito, G., 1995 Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology Clays and Clay Minerals 43 285293 10.1346/CCMN.1995.0430303.CrossRefGoogle Scholar
Smith, W. and Forester, T.R., 1996 DL-POLY is a package of molecular simulation routines Daresbury, UK Copyright the Council for the Central Laboratory of the Research Councils. Dares-bury Laboratory.Google Scholar
Sposito, G. and Prost, R., 1982 Structure of water adsorbed on smectites Chemical Review 82 553573 10.1021/cr00052a001.CrossRefGoogle Scholar
Vahedi-Faridi, A. and Guggenheim, S., 1999 Structural study of monomethylammonium and dimethylammonium-ex-changed vermiculites Clays and Clay Minerals 3 338347 10.1346/CCMN.1999.0470310.CrossRefGoogle Scholar
Van Olphen, H. and Fripiat, J.J., 1979 Data Handbook for Clay Materials and Other Non-Metallic Materials England Pergamon, Oxford.Google Scholar
Villemure, G. Detellier, C. and Szabo, A.G., 1986 Fluorescence of clay-intercalated mefhylviologen Journal of the American Chemical Society 108 46584659 10.1021/ja00275a071.CrossRefGoogle Scholar