Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T07:27:55.369Z Has data issue: false hasContentIssue false

Self-Organized Inorganic-Organic Hybrids Induced by Silylating Agents with Phyllosilicate-Like Structure and the Influence of the Adsorption of Cations

Published online by Cambridge University Press:  28 February 2024

Maria G. Da Fonseca
Affiliation:
Universidade Estadual da Paraíba, Departamento de Química, Campina Grande, Paraiba, Brazil
José S. Barone
Affiliation:
Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13083-970 Campinas, Säo Paulo, Brazil
Claudio Airoldi*
Affiliation:
Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13083-970 Campinas, Säo Paulo, Brazil
*
E-mail of corresponding author: airoldi@iqm.unicamp.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two analogous inorganic-organic hybrids with a phyllosilicate-like structure SILMg1 and SILMg2, containing 3-aminopropyl- and N-propylethylenediaminetrimethoxysilane were synthesized through a sol-gel process. These hybrids adsorbed divalent cations of cobalt, nickel, copper, and zinc from aqueous solution to give the effectiveness of adsorption capacities in the sequence Cu2+ > Zn2+ > Ni2+ > Co2+. SILMg1 has a higher capacity of adsorption than SILMg2. Elemental analysis, X-ray diffractometry, thermal analysis, infrared and nuclear magnetic resonance spectroscopies, and energy dispersive system microscopy characterized all hybrids. The proposed adsorption mechanism involves dissolution of the precursor matrix, formation of a phyllosilicate around the adsorbed ion, and a complexation of the cation by the amino-pendant groups in the interlayer. These new phyllosilicates are more crystalline than the original hybrids. The adsorption of Co2+ increases the interlayer distance to maximum values of 1.81 and 2.24 Å for SILMg1 and SILMg2, respectively. Thermal analysis data showed a decrease of thermal stability with cation adsorption. Si-O-Si groups were detected by infrared spectroscopy in all hybrids and a band at 1384 cm-1 was assigned to the nitrate counter anion, which indicates the participation of this ion in the sphere of coordination of the interlayer complexes. The photomicrographs obtained by scanning electron microscopy showed the organized distribution of the sheet structure for these synthesized phyllosilicates.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Bem-Naim, A., (1987) Solvation Thermodynamics New York Plenium Press 10.1007/978-1-4757-6550-2.CrossRefGoogle Scholar
Blinker, C.J. and Scherer, G.W., (1990) Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing New York Academic Press.Google Scholar
Burkett, S.L. Press, A. and Mann, S., (1997) Synthesis, characterization and reactivity of layered inorganic-organic nanocomposites based on 2:1 trioctahedral phyllosilicates Chemical Materials 9 10711073 10.1021/cm9700615.CrossRefGoogle Scholar
Carrado, K.A. and Langqiu, X., (1999) Materials with controlled mesoporosity derived from synthetic polyvinylpyrrolidone-clay composites Microporous and Mesoporous Materials 27 8794 10.1016/S1387-1811(98)00275-3.CrossRefGoogle Scholar
Cestari, A.R. and Airoldi, C., (1997) Chemisorption on thiolsilicas: Divalent cations as a function of pH and primary amines on thiol-mercury adsorbed Journal of Colloid and Interface Science 195 338342 10.1006/jcis.1997.5157.CrossRefGoogle ScholarPubMed
Decarreau, A., (1985) Partitioning of divalent elements between octahedral sheets of trioctahedral smectites and water Geochimica et Cosmochimica Acta 49 15371544 10.1016/0016-7037(85)90258-3.CrossRefGoogle Scholar
Decarreau, A. Grauby, O. and Petit, S., (1992) The actual distribution of octahedral cations in 2:1 clay minerals: Results from clay synthesis Applied Clay Science 7 147167 10.1016/0169-1317(92)90036-M.CrossRefGoogle Scholar
De Vynck, I., (1980) Synthese de phyllosilicates de cobalt, de nickel, de cuivre et de zinc Silicates Industriels 3 5166.Google Scholar
Farias, R.F. and Airoldi, C., (2000) Effect of addition of divalent transition metal chlorides on the structure and thermal stability of lamellar silica synthesized by neutral amine route Journal of Solid State Chemistry 149 113119 10.1006/jssc.1999.8504.CrossRefGoogle Scholar
Farmer, V.C., (1964) The infrared spectra of layer silicates Spectrochimica Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Fonseca, M.G. Silva, C.R. and Airoldi, C., (1999) Aminated phyllosilicates synthesized via a sol-gel process Langmuir 15 50485055 10.1021/la9817866.CrossRefGoogle Scholar
Fukushima, Y. and Tami, M., (1995) An organic/inorganic hybrid layered polymer: Methacrylate-magnesium(nickel) phyllosilicate Chemical Communications 241242.CrossRefGoogle Scholar
Fukushima, Y. and Tami, M., (1996) Synthesis of 2:1 type 3- (methacrylate)propyl magnesium(nickel) phyllosilicate Bulletin of the Chemical Society of Japan 69 36673671 10.1246/bcsj.69.3667.CrossRefGoogle Scholar
Hong, Y.-S. and Kim, S.-J., (1997) A layered phyllosilicate compound containing l, 12-diaz-3, 4:9, 10-dibenzo-5, 8-diox- acyclopentadecane Bulletin of the Korean Chemical Society 18 236239.Google Scholar
Kadkhodayan, A. Chi-Li, L. Pinnavaia, T.J., Leyden, D.E. and Collins, W.T., (1988) Chemical modification of the gallery surfaces in layered silicate clays (LSC’s) for catalytic applications in nucleophilic displacement reactions Chemically Modified Surfaces in Science and Industry London Gordon and Breach Science 221238.Google Scholar
Krestov, G.A., (1991) Thermodynamics of Solvation: Solution and Dissolution; Ions and Solvents; Structure and Energetics London Ellis Horwood.Google Scholar
Komarneni, S. Kozai, N. and Roy, R., (1998) Novel function for anionic clays: Selective transition metal cation uptake by diadochy Journal of Material Chemistry 6 13291331 10.1039/a801631c.CrossRefGoogle Scholar
Lishko, T.P. Glushchenko, L.V. Kholin, Y.V. Zaitev, Z.N. Bugaevskii, A. and Donskaya, N.D., (1991) Complexation on silica gels chemically modified by amines of various denticity Russian Journal of Physical Chemistry 65 15841588.Google Scholar
Mizutani, T. Fukushima, Y. Okada, A. and Kamigaito, O., (1990) Synthesis of nickel and magnesium phyllosilicates with 1:1 and 2:1 layer structures Bulletin of the Chemical Society of Japan 63 20942098 10.1246/bcsj.63.2094.CrossRefGoogle Scholar
Mosser, C. Mestdagh, M. Decarreau, A. and Herbilion, A.J., (1990) Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites Clay Minerals 25 271281 10.1180/claymin.1990.025.3.03.CrossRefGoogle Scholar
Nakamoto, K., (1986) Infrared Spectra of Inorganic and Coordination Compounds New York John Wiley and Sons.Google Scholar
Newman, A.C.D. Brown, G., Brindley, G.W. and Brown, G., (1980) The chemical constitution of clays Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 1128.Google Scholar
Pavia, D.L. Lampman, G.M. and Kriz, G.S., (1996) Introduction to Spectroscopy: A Guide for Students of Organic Chemistry Orlando Saunders College Publishing.Google Scholar
Pinnavaia, T.J., (1983) Intercalated clay catalysts Science 220 365371 10.1126/science.220.4595.365.CrossRefGoogle ScholarPubMed
Rayner, J.H. and Brown, G., (1973) The crystal structure of talc Clays and Clay Minerals 21 103144 10.1346/CCMN.1973.0210206.CrossRefGoogle Scholar
Silva, C.R. and Airoldi, C., (1997) Acid and base catalysts in the hybrid silica sol-gel process Journal of Colloid and Interface Science 195 381387 10.1006/jcis.1997.5159.CrossRefGoogle ScholarPubMed
Silverstein, R.M. Bassler, G.C. and Morrel, T.C., (1991) Spectrometric Identification of Organic Compounds London John Wiley and Sons.Google Scholar
Ukrainczyk, L. Bellman, R.A. and Anderson, A.B., (1997) Template synthesis and characterization of layered Al- and Mg-silsesquioxanes Journal Physical Chemistry B 101 531539 10.1021/jp962937l.CrossRefGoogle Scholar
Velde, B., (1992) Introduction to Clay Minerals London Chapman and Hall 10.1007/978-94-011-2368-6.CrossRefGoogle Scholar
Wesolowski, M., (1984) Thermal decomposition of talc: A review Thermochimica Acta 78 395421 10.1016/0040-6031(84)87165-8.CrossRefGoogle Scholar
Whilton, N.T. Burkett, S.L. and Mann, S., (1998) Hybrid lamellar nanocomposites based on organically functionalized magnesium phyllosilicate clays with interlayer reactivity Journal of Material Chemistry 8 1927 10.1039/a802120a.CrossRefGoogle Scholar
Wilkins, R.W.T. and Ito, J., (1967) Infrared spectra of some synthetic talcs American Mineralogist 52 16491661.Google Scholar
Yang, J.J. El-Nahhal, I.M. I-Ssuer, C. and Maciel, G.E., (1997) Synthesis and solid-state NMR structural characterization of polysiloxane-immobilized amine ligands and their metal complexes Journal of Non-Crystalline Solids 209 1939 10.1016/S0022-3093(96)00534-0.CrossRefGoogle Scholar
Xiang, Y. and Villemure, G., (1996) Electrodes modified with synthetic clay minerals: Electrochemistry of cobalt smectites Clays and Clay Minerals 44 515521 10.1346/CCMN.1996.0440410.CrossRefGoogle Scholar
Xiao, J. and Villemure, G., (1998) Preparation, characterization and electrochemistry of synthetic copper clays Clays and Clay Minerals 48 195203 10.1346/CCMN.1998.0460210.CrossRefGoogle Scholar