Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-10-04T21:14:09.869Z Has data issue: false hasContentIssue false

The role of illite in the global cycle of elements

Published online by Cambridge University Press:  08 August 2025

Jan Środoń*
Affiliation:
Institute of Geological Sciences, https://ror.org/01dr6c206 Polish Academy of Sciences , Senacka 1, 31-002 Krakow, Poland

Abstract

This review paper presents in more detail the key points of the Brindley Award lecture given at the 61st Annual Meeting of The Clay Minerals Society and 5th Asian Clay Conference in Honolulu in June 2024. It is focused on the research of the author, even though it credits earlier findings. The paper discusses first the definition of illite, its position in mineral classification, the distinction between illite and true micas, the illite crystal-growth mechanism, and the specific properties of illite, resulting from its small crystal size. Second, this review presents evidence and explanation for the exceptional abundance of this mineral on Earth’s surface. Third, the behavior of illite in the rock cycle is characterized: in weathering, in sedimentation, and in diagenetic, metamorphic, and hydrothermal environments. Finally, the exceptional role of illite in geochemical cycling of water and elements K, N, B, Rb, and Cs is presented.

Information

Type
Original Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aja, S.U., & Rosenberg, P.E. (1992). The thermodynamic status of compositionally-variable clay minerals: a discussion. Clays and Clay Minerals, 40, 292299.10.1346/CCMN.1992.0400307CrossRefGoogle Scholar
Árkai, P. (2002). Phyllosilicates in very low-grade metamorphism: transformation to micas. In Ribbe, P.H. (ed), Reviews in Mineralogy and Geochemistry, 46, chapter 11, pp. 463478. Mineralogical Society of America.Google Scholar
Aronson, J.L., & Hower, J. (1976). Mechanism of burial metamorphism of argillaceous sediment: 2. Radiogenic argon evidence. Geological Society of America Bulletin, 97, 738744.10.1130/0016-7606(1976)87<738:MOBMOA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Bailey, S.W. (1982). Nomenclature for regular interstratifications. American Mineralogist, 67, 394398.Google Scholar
Barré, P., Velde, B. & Abbadie, L. (2007) Dynamic role of ‘‘illite-like’’ clay minerals in temperate soils: facts and hypotheses. Biogeochemistry, 82, 7788.10.1007/s10533-006-9054-2CrossRefGoogle Scholar
Berner, R.A. (2006). Geological nitrogen cycle and atmospheric N2 over Phanerozoic time. Geology, 34, 413415. https://doi.org/10.1130/G22470.1CrossRefGoogle Scholar
Bétard, F., Caner, L., Gunnell, Y., & Bourgeon, G. (2009). Illite neoformation in plagioclase during weathering: evidence from semi-arid Northeast Brazil. Geoderma, 152, 5362.10.1016/j.geoderma.2009.05.016CrossRefGoogle Scholar
Bobos, I., & Williams, L.B. (2017). Boron, lithium and nitrogen isotope geochemistry of NH4-illite clays in the fossil hydrothermal system of Harghita Bãi, East Carpathians, Romania. Chemical Geology, 473, 2239.10.1016/j.chemgeo.2017.10.005CrossRefGoogle Scholar
Bozkaya, Ö., Bozkaya, G., Uysal, T., & Banks, D.A. (2016). Illite occurrences related to volcanic-hosted hydrothermal mineralization in the Biga Peninsula, NW Turkey: Implications for the age and origin of fluids. Ore Geology Reviews, 76, 3551.10.1016/j.oregeorev.2016.01.001CrossRefGoogle Scholar
Bozkaya, Ö., Günal-Türkmenoğlu, A., Göoncüoğlu, M.C., & Okuyucu, C. (2021). Geological, mineralogical and geochemical characteristics of Mississippian K-bentonites from southern Turkey: a correlation with coeval tephras from Gondwana-derived terranes. Journal of African Earth Sciences, 181, 104258.10.1016/j.jafrearsci.2021.104258CrossRefGoogle Scholar
Breiter, K., Broska, I., & Uher, P. (2015). Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia). Geologia Carpathica, 66, 1936.10.1515/geoca-2015-0008CrossRefGoogle Scholar
Brouwer, E., Baeyens, B., Maes, A. & Cremers, A. (1983). Cesium and rubidium ion equilibria in illite clay. Journal of Physical Chemistry, 87, 12131219.10.1021/j100230a024CrossRefGoogle Scholar
Brown, G., & Weir, A.H. (1963). The identity of rectorite and allevardite. Proceedings of the 1st International Clay Conference, Stockholm, vol. 1, pp. 2737.Google Scholar
Burst, J.F. (1957). Postdiagenetic clay mineral environmental relationships in the Gulf Coast Eocene. Clays and Clay Minerals, 6, 327341. doi: 10.1346/CCMN.1957.0060124Google Scholar
Canfield, D.E., Glazer, A.N., & Falkowski, P.G. (2010). The evolution and future of Earth’s nitrogen cycle. Science, 330, 192196. doi: 10.1126/science.118612CrossRefGoogle ScholarPubMed
Cooper, J.E., & Abedin, K.Z. (1981). The relationship between fixed ammonium-nitrogen and potassium in clays from a deep well on the Texas Gulf Coast. Texas Journal of Science, 33, 103111.Google Scholar
Daniels, E.J., & Altaner, S.P. (1990). Clay mineral authigenesis in coal and shale from the anthracite region, Pennsylvania. American Mineralogist, 75, 825839.Google Scholar
de Koning, A., & Comans, R.N.J. (2004). Reversibility of radiocaesium sorption on illite. Geochimica et Cosmochimica Acta, 68, 28152823.10.1016/j.gca.2003.12.025CrossRefGoogle Scholar
Derkowski, A., & McCarty, D.K. (2017). Cesium, a water-incompatible, siloxane-complexed cation in Earth’s upper crust. Geology, 45, 899902.10.1130/G39150.1CrossRefGoogle Scholar
Dong, H. (2005). Interstratified illite-smectite: a review of contributions of TEM data to crystal chemical relations and reaction mechanism. Clay Science, 12, suppl 1, 612.Google Scholar
Drits, V.A., & McCarty, D.K. (2007). The nature of structure-bonded H2O in illite and leucophyllite from dehydratation and dehydroxylation experiments. Clays and Clay Minerals, 55, 4558.10.1346/CCMN.2007.0550104CrossRefGoogle Scholar
Drits, V.A., Zviagina, B.B., McCarty, D.K., & Salyn, A.L. (2010). Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. American Mineralogist, 95, 348361.10.2138/am.2010.3300CrossRefGoogle Scholar
Eberl, D.D. (1984). Clay mineral formation and transformation in rocks and soils. In Fowden, L., Barber, F.M., & Tinker, P.B. (eds), Clay Minerals: Their Structure, Behaviour and Use (pp. 241257). Philolsophical Transactions of the Royal Society, London A, 311.Google Scholar
Eberl, D.D. & Hower, J. (1976). Kinetics of illite formation. Geological Society of America Bulletin, 187, 13261330.10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Eberl, D.D., Środoń, J., Lee, M., Nadeau, P.H., & Northrop, H.R. (1987). Sericite from the Silverton caldera, Colorado: correlation among structure, composition, origin, and particle thickness. American Mineralogist, 72, 914934.Google Scholar
Eberl, D.D., Nüesch, R., Šucha, V., & Tsipursky, S. (1998). Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation. Clays and Clay Minerals, 46, 8997.10.1346/CCMN.1998.0460110CrossRefGoogle Scholar
Eggleton, R.A., & Fitz Gerald, J. (2011). Illite from Muloorina, South Australia. Clays and Clay Minerals, 59, 608616.10.1346/CCMN.2011.0590606CrossRefGoogle Scholar
Ferreiro Mählmann, R., Rahn, M., & Potel, S. (2024). Determination of a normal orogenic palaeo-geothermal gradient with clay mineral and organic matter indices: a review. Swiss Journal of Geosciences, 117, 17.10.1186/s00015-024-00460-9CrossRefGoogle Scholar
Frederickson, A.F. & Reynolds, R.C. Jr (1960). Geochemical method for determining paleosalinity. Clays and Clay Minerals, Proceedings of the Eighth National Conference, p. 202.Google Scholar
Frey, M., Hunziker, J.C., Jäger, E., & Stern, W.B. (1983). Regional distribution of white K-mica polymorphs and their phengite content in the Central Alps. Contributions to Mineralogy and Petrology, 83, 185197.10.1007/BF00373092CrossRefGoogle Scholar
Fuller, A.J., Shaw, S., Ward, M.B., Haigh, S.J., Mosselmans, J.F.W., Peacock, C.L., Stackhouse, S., Dent, A.J., Trivedi, D., & Burke, I.T. (2015). Caesium incorporation and retention in illite interlayers. Applied Clay Science, 108, 128134.10.1016/j.clay.2015.02.008CrossRefGoogle Scholar
Furquim, S.A.C., Barbiéro, L., Graham, R.C., Queiroz Neto, J.P., Ferreira, R.P.D. & Furian, S. (2010). Neoformation of micas in soils surrounding an alkaline-saline lake of Pantanal wetland, Brazil. Geoderma, 158, 331342.10.1016/j.geoderma.2010.05.015CrossRefGoogle Scholar
Gabis, V. (1963). Étude minéralogique et géochimique de la série sédimentaire oligocène du Velay. Bulletin de la Société française de Minéralogie et Cristallographie, 86, 315354.10.3406/bulmi.1963.5663CrossRefGoogle Scholar
Garrels, R.M., & Mackenzie, F.T. (1971). Evolution of Sedimentary Rocks. Norton, New York.Google Scholar
Gaudette, H.E., Eades, J.L., & Grim, R.E. (1964). The nature of illite. Proceedings of the 13th National CIay Conference, Madison, Wisconsin, USA, pp. 3348.10.1346/CCMN.1964.0130105CrossRefGoogle Scholar
Goldblatt, C., Claire, M.W., Lenton, T.M., & Matthews, A.J. (2009). Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience, 2, 891896.10.1038/ngeo692CrossRefGoogle Scholar
Goldschmidt, V.M., & Peters, C. (1932). Geochemie des Bors: I, II. Nachrichten Der Akademie der Wissenschaften in Göttingen, Mathematische-Physikalische Klasse III, 402407, 528–545.Google Scholar
Grim, R.E., Bray, R.H., & Bradley, W.F. (1937). The mica in argillaceous sediments. American Mineralogist, 22, 813829.Google Scholar
Grubb, S.M.B., Peacor, D.R., & Jiang, W.T. (1991). Transmission electron microscope observations of illite polytypism. Clays and Clay Minerals, 39, 540550.10.1346/CCMN.1991.0390509CrossRefGoogle Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galan, E., Kogure, T., & Stanjek, H. (2006). Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Étude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54, 761772.10.1346/CCMN.2006.0540610CrossRefGoogle Scholar
Hay, R.L., Guldman, S.G., Matthews, J.C., Lander, R.H., Duffin, M.E., & Kyser, T.K. (1991). Clay mineral diagenesis in core KM-3 of Searles Lake, California. Clays and Clay Minerals, 39, 8496.10.1346/CCMN.1991.0390111CrossRefGoogle Scholar
Harder, H. (1958). Beitrag zur Geochemie des Bors. Vortragsreferat DMG-Fagung Hamburg. Fortschritte der Mineralogie, 37, 8287.Google Scholar
Higashi, S. (1982). Tobelite, a new ammonium dioctahedral mica. Mineralogical Journal, 11, 138146.10.2465/minerj.11.138CrossRefGoogle Scholar
Holloway, J.M., & Dahlgren, R. (1999). Geologic nitrogen in terrestrial biogeochemical cycling. Geology, 27, 567570.10.1130/0091-7613(1999)027<0567:GNITBC>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Hong, H., Zhang, X., Wan, M., Hou, Y., & Du, D. (2008). Morphological characteristics of (K, Na)-rectorite from Zhongxiang rectorite deposit, Hubei, central China. Journal of China University of Geosciences, 19, 3846.Google Scholar
Hong, H., Churchman, G.J., Yin, K., Li, R., & Li, Z. (2014). Randomly interstratified illite–vermiculite from weathering of illite in red earth sediments in Xuancheng, southeastern China. Geoderma, 214–215, 4249.10.1016/j.geoderma.2013.10.004CrossRefGoogle Scholar
Horstman, E.L. (1957).The distribution of lithium, rubidium and caesium in igneous and sedimentary rocks. Geochimica et Cosmochimica Acta, 12, 128.10.1016/0016-7037(57)90014-5CrossRefGoogle Scholar
Hower, J., Hurley, P.M., & Pinson, W.H. (1963). The dependence of K-Ar age on the mineralogy of various particle size ranges in a shale. Geochimica et Cosmochimica Acta, 27, 405410.10.1016/0016-7037(63)90080-2CrossRefGoogle Scholar
Hower, J., Eslinger, E., Hower, M., & Perry, E. (1976). Mechanism of burial metamorphism of argillaceous sediment: l. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Inoue, A., Utada, M., & Wakita, K. (1992). Smectite-to-illite conversion in natural hydrothermal systems. Applied Clay Science, 7, 121145.10.1016/0169-1317(92)90035-LCrossRefGoogle Scholar
Jackson, M.L. (1975). Soil Chemical Analysis – Advanced Course (2nd edn), published by the author, Madison, WI, USA.Google Scholar
Jewuła, K., Środoń, J., Kuligiewicz, A., Mikołajczak, M., & Liivamägi, S. (2022). Critical evaluation of geochemical indices of palaeosalinity involving boron. Geochimica et Cosmochimica Acta, 322, 123.10.1016/j.gca.2022.01.027CrossRefGoogle Scholar
Jung, J., Alexanian, C., Blot, P., Oberlin, A., & Rey, M. (1954). Les illites du bassin oligocène de Salins (Cantal). Bulletin de la Société française de Minéralogie et Cristallographie, 77, 12311249.10.3406/bulmi.1954.4957CrossRefGoogle Scholar
Kozáč, J., Očenáš, D., & Derco, J. (1977). Amónna hydrosluda vo Vihorlate. Mineralia Slovaca, 9, 479494 (in Slovak).Google Scholar
Krooss, B.M., Jurisch, A., & Plessen, B. (2006). Investigation of the fate of nitrogen in Palaeozoic shales of the Central European Basin. Journal of Geochemical Exploration, 89, 191194.10.1016/j.gexplo.2005.11.075CrossRefGoogle Scholar
Li, Y., Massonne, H.J., Willner, A., Tang, H.F., & Liu, C.Q. (2008). Dehydration of clastic sediments in subduction zones: theoretical study using thermodynamic data of minerals. Island Arc, 17, 577590. https://doi.org/10.1111/j.1440-1738.2008.00640.xCrossRefGoogle Scholar
Lippmann, F. (1982). The thermodynamic status of clay minerals. Proceedings of the 7th International Clay Conference, 1981, pp. 475485.Google Scholar
London, D. (1997). Estimating abundances of volatile and other mobile components in evolved silicic melts through mineral-melt equilibria. Journal of Petrology, 38, 16911706.10.1093/petroj/38.12.1691CrossRefGoogle Scholar
Lonker, S.W., & Fitz Gerald, J.D. (1990). Formation of coexisting 1M and 2M polytypes in illite from an active hydrothermal system. American Mineralogist, 75, 12821289.Google Scholar
Maegdefrau, E., & Hofmann, U. (1938). Glimmerartige Mineralien als Tonsubstanzen. Zeitschrift für Kristallographie - Crystalline Materials, 98, 3159.Google Scholar
McDowell, S.D., & Elders, W.A. (1980). Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contributions to Mineralogy and Petrology, 74, 293310.10.1007/BF00371699CrossRefGoogle Scholar
Meunier, A., & Velde, B.D. (2004). Illite: Origins, Evolution and Metamorphism. Springer.10.1007/978-3-662-07850-1CrossRefGoogle Scholar
Meyer, R. (1976). Continental sedimentation, soil genesis and marine transgression in the basal beds of the Cretaceous in the east of the Paris Basin. Sedimentology, 23, 235253.10.1111/j.1365-3091.1976.tb00048.xCrossRefGoogle Scholar
Mingram, B., Hoth, P., Luders, V., & Harlov, D. (2005). The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin. International Journal of Earth Science, 94, 10101022.10.1007/s00531-005-0015-0CrossRefGoogle Scholar
Moore, D.M., & Reynolds, R.C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford/New York.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J., & Tait, J. (1984). Interstratified clays as fundamental particles. Science, 225, 923925.10.1126/science.225.4665.923CrossRefGoogle ScholarPubMed
Nieto, F., Mellini, M., & Abad, I. (2010). The role of H3O+ in the crystal structure of illite. Clays and Clay Minerals, 58, 238246.10.1346/CCMN.2010.0580208CrossRefGoogle Scholar
Norrish, K. & Pickering, J.G. (1983). Clay Minerals. In Soils: An Australian Viewpoint (pp. 281308), CSIRO, Academic Press, Melbourne/London.Google Scholar
Odin, G.S. (ed) (1982). Numerical Dating in Stratigraphy. Wiley-Interscience.Google Scholar
Peacor, D.R., Bauluz, B., Dong, H., & Tillick, D. (2002). Transmission and analytical electron microscopy evidence for high Mg contents of 1M illite: absence of 1M polytypism in normal prograde diagenetic sequences of pelitic rocks. Clays and Clay Minerals, 50, 757765.10.1346/000986002762090281CrossRefGoogle Scholar
Perry, E. & Hower, J. (1970). Burial diagenesis in Gulf Coast pelitic sediments. Clays and Clay Minerals, 18, 165177.10.1346/CCMN.1970.0180306CrossRefGoogle Scholar
Perry, E.A. (1972). Diagenesis and the validity of the boron paleosalinity technique. American Journal of Science, 272, 150160.10.2475/ajs.272.2.150CrossRefGoogle Scholar
Reynolds, R.C. Jr (1963). Potassium-rubidium ratios and polymorphism in illites and microclines from the clay size fractions of Proterozoic carbonate rocks. Geochimica et Cosmochimica Acta, 27, 10971112.10.1016/0016-7037(63)90092-9CrossRefGoogle Scholar
Reynolds, R.C. Jr (1965). Geochemical behavior of boron during the metamorphism of carbonate rocks. Geochimica et Cosmochimica Acta, 29, 11011114.10.1016/0016-7037(65)90106-7CrossRefGoogle Scholar
Reynolds, R.C. Jr, & Hower, J. (1970). The nature of interlayering in mixed-layer illite-montmorillonites. Clays and Clay Minerals, 18, 2536.10.1346/CCMN.1970.0180104CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., D’yakonov, Yu.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval’, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z., & Wones, D.R. (1999). Nomenclature of the micas. Mineralogical Magazine, 63, 267279.10.1180/minmag.1999.063.2.13CrossRefGoogle Scholar
Righi, D., Räisänen, M.L., & Gillot, F. (1997). Clay mineral transformations in podzolized tills in central Finland. Clay Minerals, 32, 531544.10.1180/claymin.1997.032.4.04CrossRefGoogle Scholar
Rodriguez Gallego, M., & Alías Pérez, L.J. (1965). A regular mixed layer mica-beidellite. Clay Minerals, 6, 119122.10.1180/claymin.1965.006.2.06CrossRefGoogle Scholar
Rudnick, R.L., & Gao, S. (2003). The composition of the continental crust. In Holland, H.D. & Turekian, K.K. (eds), Treatise on Geochemistry, vol. 3 (pp. 164).10.1016/B0-08-043751-6/03016-4CrossRefGoogle Scholar
Sandler, A. & Saar, H. (2007). R≥1-type illite-smectite formation at near-surface temperatures. Clay Minerals, 42, 245253.10.1180/claymin.2007.042.2.09CrossRefGoogle Scholar
Sassi, F.P., Guidotti, Ch.V., Rieder, M., & De Pieri, M. (1994). On the occurrence of metamorphic 2M1 phengites; some thoughts on polytypism and crystallization conditions of 3T phengites. European Journal of Mineralogy, 6, 151160.10.1127/ejm/6/1/0151CrossRefGoogle Scholar
Sawhney, B.L. (1972). Selective sorption and fixation of cations by clay minerals: a review. Clays and Clay Minerals, 20, 93100.10.1346/CCMN.1972.0200208CrossRefGoogle Scholar
Seifert, F. (1968). X-ray powder data for Mg-Al-celadonite (leucophyllite) from Barcza, Poland. Contributions to Mineralogy and Petrology, 19, 9396.10.1007/BF00371731CrossRefGoogle Scholar
Smith, J.V. (1974). Feldspar Minerals . Vol. 2, Chemical and Textural Properties. Springer-Verlag, 690 pp.Google Scholar
Spivack, A.J., Palmer, M.R., & Edmond, J.M. (1987). The sedimentary cycle of the boron isotopes. Geochimica et Cosmochimica Acta, 51, 19391949.10.1016/0016-7037(87)90183-9CrossRefGoogle Scholar
Środoń, J. (1984). X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32, 337349.10.1346/CCMN.1984.0320501CrossRefGoogle Scholar
Środoń, J. (2007). Illitization of smectite and history of sedimentary basins. Proceedings of the 11th EUROCLAY Conference (pp. 7482), Aveiro, Portugal.Google Scholar
Środoń, J. (2010). Evolution of boron and nitrogen content during illitization of bentonites. Clays and Clay Minerals, 58, 743756.10.1346/CCMN.2010.0580602CrossRefGoogle Scholar
Środoń, J. & Elsass, F. (1994). Effect of the shape of fundamental particles on XRD characteristics of illitic minerals. European Journal of Mineralogy, 6, 113122.10.1127/ejm/6/1/0113CrossRefGoogle Scholar
Środoń, J. & Jewuła, K. (2025). Controls over cesium and rubidium contents of sedimentary rocks. Chemical Geology, 122745 (online). https://authors.elsevier.com/sd/article/S0009-2541(25)00135-4 10.1016/j.chemgeo.2025.122745CrossRefGoogle Scholar
Środoń, J., & Paszkowski, M. (2011). Role of clays in diagenetic history of boron and nitrogen in the Carboniferous of Donbas (Ukraine). Clay Minerals, 46, 561582.10.1180/claymin.2011.046.4.561CrossRefGoogle Scholar
Środoń, J., Elsass, F., McHardy, W.J. & Morgan, D.J. (1992). Chemistry of illite/smectite inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137158.10.1180/claymin.1992.027.2.01CrossRefGoogle Scholar
Środoń, J., Eberl, D.D., & Drits, V.A. (2000). Evolution of fundamental-particle size during Illitization of smectite and implications for reaction mechanism. Clays and Clay Minerals, 48, 446458.10.1346/CCMN.2000.0480405CrossRefGoogle Scholar
Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C., & Eberl, D.D. (2001). Quantitative XRD analysis of clay-rich rocks from random preparations. Clays and Clay Minerals, 49, 514528.10.1346/CCMN.2001.0490604CrossRefGoogle Scholar
Środoń, J., Clauer, N., & Eberl, D.D. (2002). Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modelling. American Mineralogist, 87, 15281535.10.2138/am-2002-11-1202CrossRefGoogle Scholar
Środoń, J., Kotarba, M., Biroň, A., Sucha, P., Clauer, N., & Wójtowicz, A. (2006). Diagenetic history of the Podhale-Orava basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite. Clay Minerals, 41, 747770.10.1180/0009855064130217CrossRefGoogle Scholar
Środoń, J., Zeelmaekers, E., & Derkowski, A. (2009). The charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals, 57, 649671.10.1346/CCMN.2009.0570511CrossRefGoogle Scholar
Środoń, J., Anczkiewicz, A.A., Dunkl, I., Vlahović, I., Velić, I., Tomljenović, B., Kawiak, T., Banaś, M., & von Eynatten, H. (2018). Thermal history of Karst Dinarides, Croatia: combined application of clay mineralogy and low-T thermochronology. Tectonophysics, 744, 155176.10.1016/j.tecto.2018.06.016CrossRefGoogle Scholar
Stevenson, F.J. (1962). Chemical state of the nitrogen in rocks. Geochimica et Cosmochimica Acta, 26, 797811.10.1016/0016-7037(62)90040-6CrossRefGoogle Scholar
Šucha, V., Kraus, I., & Madejová, J. (1994). Amonium illite from anchimetamorphic shales associated with anthracite in the Zemplinicum of the Western Carpathians. Clay Minerals, 29, 369377.10.1180/claymin.1994.029.3.08CrossRefGoogle Scholar
Šucha, V., Środoń, J., Elsass, F., & McHardy, W.J. (1996). Particle shape versus coherent scattering domain of illite/smectite: evidence from HRTEM of Dolna Ves clays. Clays and Clay Minerals, 44, 665671.10.1346/CCMN.1996.0440509CrossRefGoogle Scholar
Szegedi, Á. (1988). Mixed layer character of ‘illites’ from Füzzéradvány, Hungary. In Konta, J. (ed), Tenth Conference for Clay Mineralogy and Petrology 1986 in Ostrava (pp. 249254), Praha, Univerzita Karlova.Google Scholar
Tamura, T. (1961). Cesium sorption reactions as indicator of clay mineral structures. Clays and Clay Minerals, 10, 389398.Google Scholar
Tourtelot, H., Schultz, L.G., & Huffman, C. (1961). Boron in bentonite and shale from the Pierre shale, South Dakota, Wyoming and Montana. U.S. Geological Survey Professional Paper, 424C, 288292.Google Scholar
Wampler, J.M., Krogstad, E.J., Elliott, W.C., Kahn, B., & Kaplan, D.I. (2012). Long-term selective retention of natural Cs and Rb by highly weathered coastal plain soils. Environmental Science & Technology, 46, 38373843.10.1021/es2035834CrossRefGoogle ScholarPubMed
Warr, L.N. (2022). Earth’s clay mineral inventory and its climate interaction: a quantitative assessment. Earth-Science Reviews, 234, 10419810.1016/j.earscirev.2022.104198CrossRefGoogle Scholar
Warr, L.N., & Ferreiro Mählmann, R. (2015). Recommendations for Kübler index standardization. Clay Minerals, 50, 283286.10.1180/claymin.2015.050.3.02CrossRefGoogle Scholar
Weaver, C.E. (1967). Potassium, illite and the ocean. Geochimica et Cosmochimica Acta, 31, 21812196.10.1016/0016-7037(67)90060-9CrossRefGoogle Scholar
Weaver, C.E., & Beck, K.C. (1971). Clay water diagenesis during burial: how mud becomes gneiss. Geological Society of America, Special Paper, 134, 96.Google Scholar
Weaver, C.E., & Wampler, J.M. (1970). K, Ar, illite, burial. Geological Society of America Bulletin, 81, 34233430. doi: https://doi.org/10.1130/0016-7606(1970)81[3423:KAIB]2.0.CO;2CrossRefGoogle Scholar
West, G., & Dumbleton, M.J. (1970). The mineralogy of tropical weathering illustrated by some west Malaysian soils. Quarterly Journal of Engineering Geology and Hydrogeology, 3, 2540. https://doi.org/10.1144/GSL.QJEG.1970.003.01.02CrossRefGoogle Scholar
Williams, L.B., Hervig, R.L., Wieser, M.E., & Hutcheon, I. (2001a). The influence of organic matter on the boron isotope geochemistry of the Gulf Coast Sedimentary Basin, USA. Chemical Geology, 174, 445461.10.1016/S0009-2541(00)00289-8CrossRefGoogle Scholar
Williams, L.B., Hervig, R.L., & Hutcheon, I. (2001b). Boron isotope geochemistry during diagenesis. Part II. Applications to organic-rich sediments. Geochimica et Cosmochimica Acta, 65, 17831794.10.1016/S0016-7037(01)00558-0CrossRefGoogle Scholar
Yamamoto, T., & Nakahira, M. (1966). Ammonium ions in sericites. American Mineralogist, 51, 17751778.Google Scholar
Yang, Y., Busigny, V., Wang, Z., & Xia, Q. (2017). The fate of ammonium in phengite at high temperature. American Mineralogist, 102, 22442253. https://doi.org/10.2138/am-2017-6094CrossRefGoogle Scholar
Ylagan, R.F., Altaner, S.P., & Pozzuoli, A. (2000). Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza island, Italy. Clays and Clay Minerals, 48, 610631.10.1346/CCMN.2000.0480603CrossRefGoogle Scholar
You, C.F., Spivack, A.J., Gieskes, J.M., Rosenbauer, R., & Bischoff, J.L. (1995). Experimental study of boron geochemistry: implications for fluid processes in subduction zones. Geochimica et Cosmochimica Acta, 59, 24352442.10.1016/0016-7037(95)00137-9CrossRefGoogle Scholar
Zaunbrecher, L.K., Cygan, R.T., & Elliott, W.C. (2015). Molecular models of cesium and rubidium adsorption on weathered micaceous minerals. The Journal of Physical Chemistry A, 119, 56915700.10.1021/jp512824kCrossRefGoogle ScholarPubMed
Zorski, T., Ossowski, A., Środoń, J., & Kawiak, T. (2011). Evaluation of mineral composition and petrophysical parameters by the integration of core analysis data and wireline well log data: the Carpathian Foredeep case study. Clay Minerals, 46, 2545.10.1180/claymin.2011.046.1.25CrossRefGoogle Scholar
Zviagina, B.B., Drits, V.A., Środoń, J., McCarty, D.K., & Dorzhieva, O. (2015). The illite-aluminoceladonite series: distinguishing features and identification criteria from X-ray diffraction and infrared spectroscopy data. Clays and Clay Minerals, 63, 378394.10.1346/CCMN.2015.0630504CrossRefGoogle Scholar