Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:31:51.823Z Has data issue: false hasContentIssue false

Relation Between Structural Disorder and Other Characteristics of Kaolinites and Dickites

Published online by Cambridge University Press:  02 April 2024

G. W. Brindley
Affiliation:
Mineral Sciences Building, The Pennsylvania State University, University Park, Pennsylvania 16802
Chih-Chun Kao*
Affiliation:
Mineral Sciences Building, The Pennsylvania State University, University Park, Pennsylvania 16802
J. L. Harrison
Affiliation:
Georgia Kaolin Research, Springfield, New Jersey 07081
M. Lipsicas*
Affiliation:
Schlumberger-Doll Research, Ridgefield, Connecticut 06877
R. Raythatha
Affiliation:
Schlumberger-Doll Research, Ridgefield, Connecticut 06877
*
1Present address: Department of Materials Engineering, Tatung Institute of Technology, Taipei, Taiwan, Republic of China.
2To whom all correspondence should be addressed.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A suite of Georgia kaolinites, ranging from well-ordered to very poorly ordered samples, were studied to explore correlations between degree of structural disorder, geological environment, Fe3+ content, Fe3+ electron paramagnetic resonance (EPR) spectrum, and infrared (IR) hydroxyl-stretching band frequencies and bandwidths. Samples from different localities showed a wide range of disorder which appears to be related to differences in their geological environments. High iron content correlated strongly with low degree of order. The areas of both the I and E components of the EPR spectrum and the fractional I area correlated inversely with degree of order. Fourier-transform IR studies of kaolinites and dickites showed that (1) interlayer hydrogen bonding is weaker in dickite than in kaolinite; (2) frequency of the ν11 stretching band of the inner-surface hydroxyls increases sequentially from well-ordered kaolinite through the disordered structures to well-ordered dickite, which is consistent with a model for disorder based on vacancy displacement; and (3) the character and temperature dependence of the inner hydroxyl-stretching band is not compatible with the crystal structures of kaolinite and dickite as refined by Suitch and Young.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

Footnotes

Deceased October 23, 1983.

References

Adams, J. M., 1983 Hydrogen atom positions in kaolinite by neutron profile refinement Clays & Clay Minerals 31 352356.CrossRefGoogle Scholar
Adams, J. M. and Hewat, A. W., 1981 Hydrogen atom positions in dickite Clays & Clay Minerals 29 316319.CrossRefGoogle Scholar
Angel, B. R., Jones, J. P. E. and Hall, P. L., 1974 Electron spin resonance studies of doped synthetic kaolinite. I Clay Miner. 10 247255.CrossRefGoogle Scholar
Bailey, S. W., 1963 Polymorphism of the kaolin minerals Amer. Mineral. 48 11961209.Google Scholar
Brindley, G. W. and Nakahira, M., 1958 Further considerations of the crystal structure of kaolinite Mineral. Mag. 31 781786.Google Scholar
Brindley, G. W. and Porter, A. R. D., 1978 Occurrence of dickite in Jamaica: ordered and disordered varieties Amer. Mineral. 63 554562.Google Scholar
Brindley, G. W. and Robinson, K., 1946 The structure of kaolinite Mineral. Mag. 27 242253.Google Scholar
Cruz-Cumplido, M., Sow, C. and Fripiat, J. J., 1982 Spectre infrarouge des hydroxyles, cristallinité et énergie de cohésion des kaolins Bull. Minerai. 105 493498.CrossRefGoogle Scholar
Farmer, V. C., 1964 Infrared absorption of hydroxyl groups in kaolinite Science 145 11891190.CrossRefGoogle ScholarPubMed
Farmer, V. C. and Russell, J. D., 1964 The infrared spectra of layer silicates Spectrochim. Acta 20 11491173.CrossRefGoogle Scholar
Giese, R. F. Jr., 1982 Theoretical studies of the kaolin minerals. Electrostatic calculations Bull. Mineral. 105 417424.Google Scholar
Giese, R. F. Jr. and Datta, P., 1973 Hydroxyl orientation in kaolinite, dickite and nacrite Amer. Mineral. 58 471479.Google Scholar
Hall, P. L., 1973 Electron spin resonance studies of aluminasilicate minerals and associated organic substances .Google Scholar
Hinckley, D. N. and Swineford, A., 1963 Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals, Proc. 11th Natl. Conf., Ottawa, Ontario, 1962 New York Pergamon Press 229235.Google Scholar
Jones, J PE, Angel, B.R. and Hall, P. L., 1974 Electron spin resonance studies of doped synthetic kaolinite. II Clay Miner. 10 257270.CrossRefGoogle Scholar
Keller, W. D., Pickett, E. E., Reesman, A. L., Heller, L. and Weiss, A., 1966 Elevated dehydroxylation temperature of the Keokuk geode kaolinite Proc. Inter. Clay Conf., Jerusalem, 1966, Vol. 1 Jerusalem Israel Prog. Sci. Trans. 7585.Google Scholar
Ledoux, R. L. and White, J. L., 1964 Infrared study of selective deuteration of kaolinite and halloysite at room temperature Science 145 4749.CrossRefGoogle ScholarPubMed
Ledoux, R. L., White, J. L., Bradley, W. F. and Bailey, S. W., 1964 Infrared studies of the hydroxyl groups in intercalated kaolinite complexes Clays and Clay Minerals, Proc. 13th Natl. Conf., Madison, Wisconsin, 1964 New York Pergamon Press 289315.Google Scholar
Meads, R. E. and Maiden, P. S., 1975 Electron-spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Miner. 10 313345.CrossRefGoogle Scholar
Mestdagh, M. M., Herbillon, A. J., Rodrique, L. and Rouxhet, P. G., 1982 Evaluation du rôle du fer structural sur la cristallinité des kaolinite Bull. Minerai. 105 457466.CrossRefGoogle Scholar
Mestdagh, M. M., Vielvoye, L. and Herbillon, A. J., 1980 Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content Clay Miner. 15 113.CrossRefGoogle Scholar
Newnham, R. E., 1961 A refinement of the dickite structure and some remarks on polymorphism in kaolin minerais Minerai. Mag. 32 683704.Google Scholar
Newnham, R. E. and Brindley, G. W., 1956 The crystal structure of dickite Acta Crystallogr. 9 759764.CrossRefGoogle Scholar
Newnham, R. E. and Brindley, G. W., 1957 The structure of dickite: correction Acta Crystallogr. 10 88.CrossRefGoogle Scholar
Norton, F. H. and Speil, S., 1938 The measurement of particle sizes in clays J. Amer. Ceram. Soc. 21 8997.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray powder diffraction—I. Principle of calculation of the diffraction phenomenon Clays & Clay Minerals 25 430435.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites Clays & Clay Minerals 25 436450.CrossRefGoogle Scholar
Prost, R., 1984 Etude par spectroscopie infrarouge à basse température des groupes OH de structure de la kaolinite, de la dickite et de la nacrite Agronomia 4 403406.CrossRefGoogle Scholar
Robertson, R. H. S., Brindley, G. W. and Mackenzie, R. C., 1954 Mineralogy of kaolin clays from Pugu, Tanganyika Amer. Mineral. 39 118139.Google Scholar
Rouxhet, P. G., Samudacheata, N., Jacobs, H. and Anton, O., 1977 Attribution of the OH stretching bands of kaolinite Clay Miner. 12 171178.CrossRefGoogle Scholar
Stoch, L., 1964 Thermal dehydroxylation of minerals of the kaolinite group Bull. Acad. Polon. Sci. Ser. Sci. Geol. Geogr. 12 173180.Google Scholar
Stoch, L., Rybicka, E. and Gorniak, K., 1979 Mineralogical composition of kaolinite clays from the “Janina” mine at Suszki near Boleslawiec Mineral. Polon. 10 6379.Google Scholar
Suitch, P. R. and Young, R. A., 1983 Atom positions in highly ordered kaolinite Clays & Clay Minerals 31 357366.CrossRefGoogle Scholar
Tchoubar, C., Plançon, A., Ben Brahim, J., Clinard, C. and Sow, C., 1982 Caractéristiques structurales des kaolinites désordonnées Bull. Mineral. 105 477491.Google Scholar
Zvyagin, B. B., 1960 Electron diffraction determination of the structure of kaolinite Kristallografiya 5 3241.Google Scholar