Published online by Cambridge University Press: 01 January 2024
Reflectance spectroscopy is a rapid, non-destructive technique capable of characterizing mineral and organic components within geologic materials at spatial scales that range from μm to km. The degree to which reflectance spectra can be used to provide quantitative information about organic compounds remains poorly understood, particularly for rocks with low organic content that are common in the Earth’s ancient rock record and that may be present on other planetary bodies, such as Mars. In the present study, reflectance spectra (0.35–25 μm) were acquired for a suite of Proterozoic shales and the kerogen was isolated to assess how spectral properties of aliphatic and aromatic C-H absorption bands can be used to predict organic matter abundance (total organic content, TOC, and H/C ratio). A number of spectral parameters were evaluated for organic absorption bands observed in the 3–4 μm wavelength region for comparison with independently measured TOC and H/C values. Ratios of the strengths of aliphatic to aromatic absorption bands were directly correlated to H/C values, but the reflectance spectra for pure kerogens with H/C < 0.2 lacked clear evidence for C-H absorption bands in this spectral region. Organic absorption bands are routinely observed for bulk rock powders with >1 wt.% TOC, but the detection limits of reflectance spectra for TOC may be <1 wt.% or as high as 10 wt.%. Organic detection limits for reflectance spectra are, thus, controlled by both TOC and H/C values, but these parameters can be predicted for clay-rich, kerogen-dominated samples for a range of values that are relevant to drill cores, outcrops, meteorites, and planetary surfaces.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.