Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T21:28:59.803Z Has data issue: false hasContentIssue false

Properties of Iron Oxides in Two Finnish Lakes in Relation to the Environment of Their Formation

Published online by Cambridge University Press:  02 April 2024

U. Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
L. Carlson*
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
E. Murad
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
*
1Permanent address: Department of Geology, University of Helsinki, SF-00171 Helsinki, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fifteen iron oxide accumulations from the bottoms of two Finnish lakes (“lake ores”) were found to contain as much as 50% Fe. Differential X-ray powder diffraction and selective dissolution by oxalate showed that the samples consisted of poorly crystallized goethite and ferrihydrite. The crust ores of one lake had higher ferrihydrite to goethite ratios than the nodular ores of the other lake. The higher ferrihydrite proportion was attributed to a higher rate of Fe2+ supply from the ground water and/or a higher rate of oxidation as a function of water depth and bottom-sediment permeability.

Values of Al-for-Fe substitution of the goethites determined from unit-cell dimensions agreed with those obtained from chemical extraction if the unit-cell volume rather than the c dimension was used. In very small goethite crystals a slight expansion of the a unit-cell dimension is probaby compensated by a corresponding contraction of the c dimension, so that a contraction of the c dimension need not necessarily be caused by Al substitution.

The goethites of the two lakes differed significantly in their Al-for-Fe substitutions and hence in their unit-cell sizes, OH-bending characteristics, dehydroxylation temperatures, dissolution kinetics, and Möss-bauer parameters. The difference in Al substitution (0 vs. 7 mole %) is attributed to the Al-supplying power of the bottom sediments: the silty-clayey sediments in one lake appear to have supplied Al during goethite formation, whereas the gravelly-sandy sediments in the other lake did not. The compositions of the goethites thus reflect their environments of formation.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Aarnio, B. (1915) Über die Ausfällung de Eisenoxyds und der Tonerde in Finnländischen Sand- und Grusböden: Geo-tek Medd. 16, 76 pp.Google Scholar
Aschan, O., 1908 Humusämnena i de Nordiska Inlands-vattnen och deras Betydelse, Särskildt vid Sjömalmernas Daning. Bidrag till Kännedom afFinlands Natur och Folk Helsingfors Finska Vetenskaps-Societen.Google Scholar
Boltz, D. F. and Mellon, M. G., 1947 Determination of P, Ge, Si, and As by the heteropoly blue method Anal. Chem. 19 873878.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1981 Natural ferrihy-drites in surface deposits from Finland and their association with silica Geochim. Cosmochim. Acta 45 421429.CrossRefGoogle Scholar
Cornell, R. M., Posner, A. M. and Quirk, J. P., 1974 Crystal morphology and the dissolution of goethite J. Inorg. Nucl. Chem. 36 19371946.CrossRefGoogle Scholar
Fitzpatrick, R. W. and Schwertmann, U., 1982 Al-substi-tuted goethite—An indicator of pedogenic and other weathering environments in South Africa Geoderma 27 335347.CrossRefGoogle Scholar
Halbach, P., 1972 Vorkommen, Zusammensetzung und Genese Fe- und Mn-haltiger Erze in Süsswasserseen Finnlands—Ein Beitrag zur Geochemie und Entstehung kon-kretionärer Bodenbildungen .Google Scholar
Halbach, P., 1976 Mineralogical and geochemical investigations of Finnish lake ores Bull. Geol. Soc. Finland 48 3342.CrossRefGoogle Scholar
Henmi, T., Wells, N., Childs, C. W. and Parfitt, R. L., 1980 Poorly ordered iron rich precipitates from springs and streams on andesitic volcanoes Geochim. Cosmochim. Acta 44 365372.CrossRefGoogle Scholar
Holmberg, H. J., 1858 Materialier Till Finlands Geognosi Finska Litteratursällskapet .Google Scholar
Kabai, J., 1973 Determination of specific activation energies of metal oxides and metal oxide hydrates by measure-ment of the rate of dissolution Acta Chem. Acad. Sci. Hung. 78 5773.Google Scholar
Klug, H. P. and Alexander, L. E., 1974 X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials 2nd ed. New York Wiley.Google Scholar
Koutler-Anderson, E., 1953 The sulfosalicylic method for iron determination and its use in certain soil analysis Ann. Roy. Agric. Coll. Sweden 20 297308.Google Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate-bicarbonate sys-tem buffered with sodium bicarbonate Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D. C., 1958 New York Pergamon Press 317327.Google Scholar
Murad, E., 1982 The characterization of goethite by Möss-bauer spectroscopy Amer. Miner. 67 10071011.Google Scholar
Schulze, D. G., 1981 Identification of soil iron oxide minerals by differential X-ray diffraction Soil Sci. Soc. Amer. J. 45 437440.CrossRefGoogle Scholar
Schulze, D. G., 1984 The influence of aluminum on iron oxides. VIII. Unit cell dimensions of Al-substituted goethites and estimation of Al from them Clays & Clay Minerals 32 3644.CrossRefGoogle Scholar
Schulze, D. G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides. X. The properties of Al-substituted goethites Clay Miner. 19 521539.CrossRefGoogle Scholar
Schulze, D. G. and Schwertmann, U., 1987 The influence of aluminium on iron oxides. XIII. Properties of goethites synthesized in 0.3 M KOH at 25°C Clay Miner. 22 8392.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Z. Pflanzenern. Düng. Bodenk. 105 194202.CrossRefGoogle Scholar
Schwertmann, U., 1979 The influence of aluminum on iron oxides: 5. Clay minerals as sources of aluminum Soil Sci. 128 195200.CrossRefGoogle Scholar
Schwertmann, U., 1984 The influence of aluminium on iron oxides: IX. Dissolution of Al goethites in 6 M HCl Clay Miner. 19 919.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J. W., Goodman, B. A. and Schwertmann, U., 1987 Some properties of soil and syn-thetic iron oxides Iron in Soils and Clay Minerals Dordrecht Reidel (in press).Google Scholar
Schwertmann, U., Stucki, J. W., Goodman, B. A. and Schwertmann, U., 1987 Occurrence and formation of iron oxides in various pedoenvironments Iron in Soils and Clay Minerals Dordrecht Reidel (in press).Google Scholar
Schwertmann, U., 1987 Goethite and hematite formation in the presence of clay minerals at 25°C Soil Sci. Soc. Amer. J. (in press).CrossRefGoogle Scholar
Schwertmann, U., Cambier, P. and Murad, E., 1985 Properties of goethites of varying crystallinity Clays & Clay Minerals 33 369378.CrossRefGoogle Scholar
Schwertmann, U. and Latham, M., 1986 Properties of iron oxides in some New Caledonian soils Geoderma 39 105123.CrossRefGoogle Scholar
Schwertmann, U., Schulze, D. G. and Murad, E., 1982 Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction and Mössbauer spectroscopy Soil Sci. Soc. Amer. J. 46 869875.CrossRefGoogle Scholar
Vaasjoki, O. and Gonzalez Reyna, J., 1956 On the natural occurrence of manganese in Finland Proc. 20th Int. Geol. Congr., Symposium on Manganese, Vol. 5 5162.Google Scholar