Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T13:47:24.206Z Has data issue: false hasContentIssue false

Preparation and Properties of Hematite with Structural Phosphorus

Published online by Cambridge University Press:  28 February 2024

Natividad Gálvez
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
Vidal Barrón
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
José Torrent
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Synthetic hematites prepared in the presence of phosphate can incorporate phosphorus (P) in forms other than phosphate adsorbed by ligand-exchange on the crystal surface. To investigate the nature of such occluded P, which is also found in some natural specimens, we prepared 13 hematites by aging ferrihydrite precipitated from Fe(NO3)3-KH2PO4 solutions. The P/Fe atomic ratio of the resulting hematites ranged from 0 to 3% and all incorporated significant amounts of OH. As P content is raised, particle morphology changes from rhombohedral to spindle or ellipsoid-shaped. Despite the grainy appearance in transmission electron microscope images, X-ray diffraction data indicate that the particles are single crystals. Specific surface area ranged from 66 to 91 m2g−1, partly in micropores. The intensity of the absorption bands due to Fe3+ ligand field transition in the visible region, as measured by the second derivative of the Kubelka-Munk function, suggests that both OH and P contribute to an Fe deficiency in the structure. Such a deficiency is also apparent from the 104/113 peak intensity ratio in the X-ray diffraction patterns. The c unit-cell length increases with increasing P content. The infrared spectra exhibit four bands in the P-OH stretching region (viz., at 936, 971, 1005, and 1037 cm−1) which suggest that occluded PO4 possesses a low symmetry. Congruent dissolution of P and Fe was observed on acid treatment of the hematites, the dissolution rate being negatively correlated with the P content. All observations are consistent with the occluded P in the hematites being structural. A model is proposed where P occupies tetrahedral sites in the hematite structure, thus resulting in an Fe deficiency and facilitating proton incorporation.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Barrón, V. and Torrent, J., 1986 Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour Journal of Soil Science 37 499510 10.1111/j.1365-2389.1986.tb00382.x.CrossRefGoogle Scholar
Barrón, V. and Torrent, J., 1996 Surface hydroxyl configuration of various crystal faces of hematite and goethite Journal of Colloid and Interface Science 177 407410 10.1006/jcis.1996.0051.CrossRefGoogle Scholar
de Cabrera, F. Arambarri, P. Madrid, L. and Toca, C.G., 1981 Desorption of phosphate from iron oxides in relation to equilibrium pH and porosity Geoderma 26 203216 10.1016/0016-7061(81)90016-1.CrossRefGoogle Scholar
Colombo, C., 1993 Adsorción y desorción del fosfato en hematites de diferentes propiedades morfológicas y cristalinas .Google Scholar
Colombo, C. Barrón, V. and Torrent, J., 1994 Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites Geochimica et Cosmochimica Acta 58 12611269 10.1016/0016-7037(94)90380-8.CrossRefGoogle Scholar
Cornell, R.M. and Giovanoli, R., 1993 Acid dissolution of hematites of different morphologies Clay Minerals 28 223232 10.1180/claymin.1993.028.2.04.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides .Google Scholar
de Keijser, T.H. Mittemeijer, E.J. and Rozendaal, H.C.F., 1983 The determination of crystallite size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures Journal of Applied Crystallography 16 309316 10.1107/S0021889883010493.CrossRefGoogle Scholar
Gálvez, N. Barrón, V. and Torrent, J., 1999 Effect of phosphate on the crystallization of hematite, goethite, and lep-idocrocite from ferrihydrite Clays and Clay Minerals 47 304311 10.1346/CCMN.1999.0470306.CrossRefGoogle Scholar
Izumi, F. and Young, R.A., 1993 Rietveld analysis programs RIETAN and PREMOS and special applications The Rietveld Method 236253.CrossRefGoogle Scholar
Kandori, K. Uchida, S. and Kataoka, S., 1992 Effects of silicate and phosphate ions on the formation of ferric oxide hydroxide particles Journal of Materials Science 27 719728 10.1007/BF02403885.CrossRefGoogle Scholar
Matijevic, E., 1993 Preparation and properties of uniform size colloids Chemistry of Materials 5 412426 10.1021/cm00028a004.CrossRefGoogle Scholar
Morales, M.P. González-Carreño, T. and Serna, C.J., 1992 The formation of α-Fe2O3 monodispersed particles in solution Journal of Materials Research 7 25382545 10.1557/JMR.1992.2538.CrossRefGoogle Scholar
Morris, R.V. Lauer, H.V. Lawson, C.A. Gibson, E.K. Nace, G.A. and Stewart, C., 1985 Spectral and other physico-chemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH), and lepidocrocite (7-FeOOH) Journal of Geophysical Research 90 31263144 10.1029/JB090iB04p03126.CrossRefGoogle Scholar
Murphy, J. and Riley, J.P., 1962 A modified single solution method for the determination of phosphate in natural waters Analytica Chimica Acta 27 3136 10.1016/S0003-2670(00)88444-5.CrossRefGoogle Scholar
Ocaña, M. Morales, M.P. and Serna, C.J., 1995 The growth mechanism of α-Fe2O3 ellipsoidal particles in solution Journal of Colloid and Interface Science 171 8591 10.1006/jcis.1995.1153.CrossRefGoogle Scholar
Olson, R.V. Ellis, R. Jr, Page, A.L. Miller, R.H. and Keeney, D.R., 1982 Iron Methods of Soil Analysis. Part 2, 2nd edition 301312.CrossRefGoogle Scholar
Persson, P. Nilsson, N. and Sjöberg, S., 1996 Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface Journal of Colloid and Interface Science 177 263275 10.1006/jcis.1996.0030.CrossRefGoogle ScholarPubMed
Press, W.H. Teukolsky, S.A. Vetterling, W.T. and Flannery, B.P., 1992 Numerical Recipes in Fortran .Google Scholar
Reeves, N.J. and Mann, S., 1991 Influence of inorganic and organic additives on the tailored synthesis of iron oxides Journal of the Chemical Society, Faraday Transactions 87 38753880 10.1039/ft9918703875.CrossRefGoogle Scholar
Ruiz, J.M. Delgado, A. and Torrent, J., 1997 Iron-related phosphorus in overfertilized European soils Journal of Environmental Quality 26 15481554 10.2134/jeq1997.00472425002600060014x.CrossRefGoogle Scholar
Scheinost, A.C. Chavernas, A. Barrón, V. and Torrent, J., 1998 Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxides in soils Clays and Clay Minerals 46 528537 10.1346/CCMN.1998.0460506.CrossRefGoogle Scholar
Sherman, D.M. and Waite, T.D., 1985 Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV American Mineralogist 70 12621269.Google Scholar
Stanjek, H., 1991 Aluminium- und Hydroxylsubstitution in synthetischen und natürlichen Hämatiten .Google Scholar
Stanjek, H. and Schwertmann, U., 1992 The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites Clays and Clay Minerals 40 347354 10.1346/CCMN.1992.0400316.CrossRefGoogle Scholar
Sugimoto, T. and Muramatsu, A., 1996 Formation mechanism of monodispersed Fe2O3 particles in dilute FeCl3 solutions Journal of Colloid and Interface Science 184 626638 10.1006/jcis.1996.0660.CrossRefGoogle ScholarPubMed
Sugimoto, T. Muramatsu, A. Sakata, K. and Shindo, D., 1993 Characterization of hematite particles of different shapes Journal of Colloid and Interface Science 158 420428 10.1006/jcis.1993.1274.CrossRefGoogle Scholar
Sugimoto, T. Wang, Y. Itoh, H. and Muramatsu, A., 1998 Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles Colloids and Surfaces 134 265279 10.1016/S0927-7757(97)00103-9.CrossRefGoogle Scholar
Torrent, J. and Schwertmann, U., 1987 Influence of hematite on the color of red beds Journal of Sedimentary Petrology 57 682686.Google Scholar
Torrent, J. Barrón, V. and Schwertmann, U., 1990 Phosphate adsorption and desorption by goethites differing in crystal morphology Soil Science Society of America Journal 54 10071012 10.2136/sssaj1990.03615995005400040012x.CrossRefGoogle Scholar
Weidler, P.G. Degovics, G. and Laggner, P., 1998 Surface roughness created by acidic dissolution of synthetic goe-thite monitored with SAXS and N2-adsorption isotherms Journal of Colloid and Interface Science 197 18 10.1006/jcis.1997.5227.CrossRefGoogle ScholarPubMed
Wolska, E., 1981 The structure of hydrohematite Zeitschrift für Kristallographie 154 6975.CrossRefGoogle Scholar