Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T18:45:08.048Z Has data issue: false hasContentIssue false

Potassium- and Ammonium-Treated Montmorillonites. II. Calculation of Characteristic Layer Charges

Published online by Cambridge University Press:  01 July 2024

Daniel Machajdík
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta, 809 34 Bratislava, Czechoslovakia
Blahoslav Číčel
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta, 809 34 Bratislava, Czechoslovakia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The formation of an interstratified structure in dioctahedral smectite was assumed to be influenced by (1) the overall layer charge density and its distribution in the structure, (2) the solvation energy of the cation, and (3) the nature of the solvation agent. By holding factors (2) and (3) constant it was possible to calculate the average local charge densities $\overline {{\rm{QA}}}$, $\overline {{\rm{QC}}} $, and $\overline {{\rm{QE}}} $ which are necessary for formation of 10-, 14-, and 16.8-Å mixed-layer phases in potassium-treated and ethylene glycol (EG) saturated smectites. The values of $\overline {{\rm{QA}}} $, $\overline {{\rm{QC}}} $, and $\overline {{\rm{QE}}} $ were 1.99, 1.2, and 0.56 esu/unit cell, respectively. Ammonium-treated smectites saturated with EG gave corresponding mean local charge densities of 2.7, 1.6, and 0.72 esu/unit cell. Calculations were made under the limiting condition QA > QC > QE > 0.

For K-smectites saturated with EG, Qtot = 1.99pA + 1.2pC + 0.56pE, where Qtot is the total charge (esu/unit cell), and pA, pC, and pE are probability coefficients for 10-, 14-, and 16.8-Å phases in the interstratified structure. The above equation calculated with the aid of least squares and without the limiting condition yields

$${{\rm{Q}}_{{\rm{tot}}}} = {\rm{2}}{\rm{.05pA + 1}}{\rm{.29pC + 0}}{\rm{.33pE}}{\rm{.}}$$
There is a good agreement between values obtained for K-smectites and those for mica, vermiculite, and montmorillonite layer charges for which the above unit-structure distances are typical.

Резюме

Резюме

Предполагается, что на образование внутринапластованной структуры в диоктаедрическом смектите влияют: (1) полная плотность заряда слоя и её распределение в структуре, (2) энергия сольватации катиона, и (3) природа агента сольватации. Поддерживая факторы (2) и (3) постоянными, можно рассчитать средние местные плотности заряда $\overline {{\rm{QA}}}$, $\overline {{\rm{QC}}} $, и $\overline {{\rm{QE}}} $, необходимые для образования 10-, 14-, и 16,8 фаз со смешанными слоями в смектите, обработанном потасом и насыщенном этиленовым гликолем (ЭГ). Величины $\overline {{\rm{QA}}} $, $\overline {{\rm{QC}}} $, и $\overline {{\rm{QE}}} $, были 1,99, 1,2 и 0,56 эе/эя (электростатическая единица/элементарная ячейка), соответственно. Для смектитов, обработанных аммонием, насыщенных ЭГ, соответствующие средние местные плотности заряда были 2,7, 1,6, и 0,72 эе/эя. Были проведены расчеты при условии: QА > QС > QЕ > 0.

Для К-смектитов, насыщенных ЭГ, Qпол = 1,99рА + 1,2рС + 0,56рЕ, где: Qпол = полный заряд; рА, рС, и рЕ = коеффициенты вероятности для 10-, 14-, и 16,8-Å фаз во внутринапластованной структуре. Вышеупомянутое уравнение, решенное при помощи метода наиментших квадратов и без ограничивающего условия, имеет вид:Наблюдается хорошее соответствие между величинами слойпого заряда для К-смектита и величинами для слюды, вермикулита и монтмориллонита, для которых вышеупомянутые расстояния элементарной структуры явлются типичными. [Е.С.]

Resümee

Resümee

Es wurde angenommen, daß die Bildung einer Wechsellagerungsstruktur in dioktaedrischem Smektit beeinflußt wird durch (1) die gesamte Schichtladungsdichte und ihre Verteilung in der Struktur, (2) die Solvatationsenergie des Kations, und (3) die Art des Lösungsmittels. Indem die Faktoren (2) und (3) konstant gehalten wurden, war es möglich die lokalen durchschnittlichen Ladungsdichten$\overline {{\rm{QA}}} $, $\overline {{\rm{QC}}} $, und $\overline {{\rm{QE}}} $ zu berechnen, die für die Bildung von 10-, 14- und 16.8-Å Wechsellagerungsphasen in Kalium-behan-delten und Ethylenglycol (EG)-gesätttigten Smektiten notwendig sind. Die werte von $\overline {{\rm{QA}}} $, $\overline {{\rm{QC}}} $, und $\overline {{\rm{QE}}} $ betrugen 1,99, 1,2 und 0,56 esu/uc, bzw. Ammonium-behandelte, EG-gesättigte Smektite gaben entsprechende mittlere lokale Ladungsdichten von 2,7, 1,6, und 0,72 esu/uc. Es wurden Berechnungen durchgeführt mit der Einschränkung QA > QC > QE > 0.

Bei EG-gesättigtem K-Smektit ergab sich Qtot = 1,99pA + 1,2pC + 0,56pE, wobei Qtot die Gesamtladung (esu/uc) ist, und pA, pC, und pE die Wahrscheinlichkeitskoeffizienten für die 10-, 14- und 16,8 Å-Phasen in der Wechsellagerungsstruktur darstellen. Die obere Gleichung, berechnet mit Hilfe der Methode der kleinsten Quadrate und ohne Nebenbedingung, ergibt

$${{\rm{Q}}_{{\rm{tot}}}} = {\rm{2,05pA + 1,29pC + 0,33pE}}{\rm{.}}$$
Es ergibt sich eine gute Übereinstimmung der Werte, die für K-Smektit-, Glimmer-, Vermiculit-, und Montmorillonitschichtladungen erhalten wurden, für die die oben erwähnten Einheitsstrukturabstände typisch sind. [U.W.]

Résumé

Résumé

On a assumé que la formation d'une structure interstratifiée dans une smectite était influencée par (1) la densité de charge de couche totale, (2) l’énergie de solvation du cation, et (3) la nature de l'agent solvant. En gardant constants les facteurs (2) et (3), il était possible de calculer les densités de charge locales moyennes $\overline {{\rm{QA}}} $, $\overline {{\rm{QC}}} $, et $\overline {{\rm{QE}}} $, qui sont nécessaires à la formation de phases mélangées 10-Å, 14-Å, et 16,8-Å dans les smectites traitées au potassium et saturées de glycol éthylène (EG). Les valeurs de $\overline {{\rm{QA}}} $, $\overline {{\rm{QC}}} $, et $\overline {{\rm{QE}}} $ étaient respectivement 1,99, 1,2, et 0,56 esu/uc. Des smectites traitées à l'ammonium saturées de EG donnaient des densités de charge locales moyennes correspondantes de 2,7, 1,6, et 0,72 esu/uc. Les calculs ont été faits sous les conditions limitantes QA > QC > QE > 0.

Pour les smectites-K saturées de EG, Qtot = 1,99pA + 1,2pC + 0,56pE, où Qtot est la charge totale (esu/uc), et pA, pC, et pE sont des coefficients de probabilité pour les phases 10-Å, 14-Å, et 16,8-Å dans la structure interstratifiée. L’équation ci-dessus calculée à l'aide des carrés moindres et sous les conditions limitantes donne

$${{\rm{Q}}_{{\rm{tot}}}} = {\rm{2,05pA + 1,29pC + 0,33pE}}$$
Les valeurs obtenues pour les smectites-K sont semblables à celles obtenues pour les charges de couche pour le mica, la vermiculite, et la montmorillonite pour lesquelles les distances de structure de maille cidessus sont typiques. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

References

Besson, G. Mifsud, A. Tchoubar, C. and Méring, J., (1974) Order and disorder relations in the distribution of the substitutions in smectites, illites and vermiculites Clays & Clay Minerals 22 379384.Google Scholar
Bradley, W. F. Weiss, E. J. and Rowland, R. A., (1963) A glycol-sodium vermiculite complex Clays & Clay Minerals 10 117122.Google Scholar
Brown, G. Weir, A. H., Rosenqvist, T. and Graff-Peterson, P., (1963) The identity of rectorite and allevardite Proc. Int. Clay Conf., Stockholm, 1963, Vol. 1 Oxford Pergamon Press 2735.Google Scholar
Číčel, B. and Machajdík, D., (1978) Zur Charakterisierung von Wechsellagerungsstrukturen, die durch Kaliumbehandlung von Smektiten entstehen Silikattechnik 29 259.Google Scholar
Číčel, B. and Machajdík, D., (1981) Potassium- and ammonium-treated montmorillonites. I. Interstratified structures with ethylene glycol and water Clays & Clay Minerals 29 4046.Google Scholar
Drits, V. A. and Kossovskaya, A. G., (1966) On some structural characteristics of long-spacing layer-lattice minerals Physical Methods of Sedimentary Rocks Investigation Moscow Nauka 150162.Google Scholar
Dyal, R. S. and Hendricks, S. B., (1952) Potassium fixation in montmorillonite Soil Sci. Soc. Amer. Proc. 16 4548.Google Scholar
Ezekiel, M. and Fox, K. A., (1959) Methods of Correlation and Regression Analysis New York Wiley.Google Scholar
Hofmann, U. Weiss, A. Koch, G. Mehler, A. Scholz, A. and Swineford, A., (1956) Intracrystalline swelling, cation exchange, and anion exchange of minerals of the montmorillonite group and kaolinite Clays and Clay Minerals, Proc. 4th Nat. Conf., University Park, Pennsylvania, 1955 Washington, D.C. Nat. Acad. Sci. Nat. Res. Counc. Publ. 273287.Google Scholar
Horváth, I. Novák, I. and Bailey, S. W., (1976) Potassium fixation and the charge of montmorillonite layers Proc. Int. Clay Conf., Mexico City, 1975 Wilmette, Illinois Applied Publishing 185189.Google Scholar
Hower, J. and Bailey, S. W., (1967) Order of mixed-layering in illite-montmorillonites Clays and Clay Minerals, Proc. 15th Nat. Conf., Pittsburgh, Pennsylvania, 1966 New York Pergamon Press 6374.Google Scholar
Lagaly, G. Fernandez Gonzales, M. and Weiss, A., (1976) Problems in layer-charge determination of montmorillonites Clay Miner. 11 173187.CrossRefGoogle Scholar
Lagaly, G. Weiss, A. and Heller, L., (1969) Determination of the layer charge in mica-type layer silicates Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 6180.Google Scholar
Mackenzie, R. C. and Swineford, A., (1963) De natura lutorum Clays and Clay Minerals, Proc. 11th Nat. Conf., Ottawa, Ontario, 1962 New York Pergamon Press 1128.Google Scholar
Muravyov, V. I. and Sakharov, B. A., (1970) Experimental study of the sorption of potassium by montmorillonite Sedimentology 15 103113.CrossRefGoogle Scholar
Sawhney, B. L., (1969) Regularity of interstratification as affected by charge density in layer silicates Soil Sci. Soc. Amer. Proc. 33 4246.Google Scholar
Schultz, L. G., (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites Clays & Clay Minerals 17 115149.CrossRefGoogle Scholar
Shutov, V. D. Drits, V. A. Sakharov, B. A. and Heller, L., (1969) On the mechanism of a post-sedimentary transformation of montmorillonite in hydromica Proc. Int. Clay Conf., Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 523532.Google Scholar
Stul, M. S. and Mortier, W. J., (1974) The heterogeneity of the charge density in montmorillonites Clays & Clay Minerals 22 391396.CrossRefGoogle Scholar
Tettenhorst, R. Johns, W. D., Bailey, W. F. and Bailey, S. W., (1966) Interstratification in montmorillonite Clays and Clay Minerals, Proc. 13th Nat. Conf., Madison, Wisconsin, 1964 New York Pergamon Press 8593.Google Scholar
Wear, J. I. and White, J. L., (1951) Potassium retention in clay minerals as related to crystal structure Soil Sci. 71 114.Google Scholar
Weaver, C. E., (1958) The effects and geological significance of potassium fixation by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic materials Amer. Mineral. 43 839861.Google Scholar
Weaver, C. E., (1968) Relations of composition to structure of dioctahedral 2:1 clay minerals Clays & Clay Minerals 16 5161.Google Scholar
Weaver, C. E. and Pollard, L. D., (1973) The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar
Weir, A. H., (1965) Potassium retention in montmorillonite Clay Miner. 6 1722.Google Scholar