Published online by Cambridge University Press: 01 January 2024
Several barrier types are envisaged to minimize the release of radionuclides from waste matrices into groundwater. In a number of countries argillaceous rocks make up the natural barrier that will isolate radioactive substances from the aquifer. The present study addresses the influence of pore geometry as a limiting factor for anion diffusion in argillaceous rocks. Irrespective of the pore core size, anion diffusion can be limited by the pore-size opening, i.e. if the pore opening is so narrow that the electric double layers overlap and form a barrier to anions irrespective of the pore size. This so-called ‘bottleneck effect’ limits the anion diffusion. The present study extends previous investigations that focused on other factors which limit anion diffusion, e.g. mineralogy or interlayer equivalent pores. The existence of bottleneck pores was confirmed by effective tortuosity calculations and retention-potential measurements using mercury intrusion porosimetry. On the basis of two different core samples from argillaceous rocks from Switzerland, Opalinus Clay and Helvetic Marl, this work shows evidence of the existence of bottleneck pores. The larger permanent anion exclusion in the Helvetic Marl sample compared to the Opalinus Clay sample can be explained by the larger retention potential and larger effective tortuosity of the Helvetic Marl rock, which indicates more pores with bottleneck effects than is the case for the Opalinus Clay rock.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.