Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T22:27:47.453Z Has data issue: false hasContentIssue false

A Multi-Technique Characterization of Cronstedtite Synthesized by Iron-Clay Interaction in a Step-By-Step Cooling Procedure

Published online by Cambridge University Press:  01 January 2024

I. Pignatelli*
Affiliation:
GeoRessources UMR-CNRS 7359, Université de Lorraine, Faculté des sciences et technologies, Campus Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
E. Mugnaioli
Affiliation:
Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Welderweg 11, 55128, Mainz, Germany
J. Hybler
Affiliation:
Institute of Physics, Academy of Science of Czech Republic, Cukrovarnicka 10, 16253, Prague 6, Czech Republic
R. Mosser-Ruck
Affiliation:
GeoRessources UMR-CNRS 7359, Université de Lorraine, Faculté des sciences et technologies, Campus Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
M. Cathelineau
Affiliation:
GeoRessources UMR-CNRS 7359, Université de Lorraine, Faculté des sciences et technologies, Campus Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
N. Michau
Affiliation:
Agence nationale pour la gestion des déchets radioactifs (ANDRA), Direction Recherche et Développement/Service Colis et Matériaux, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298, Châtenay-Malabry Cedex, France
*
*E-mail address of corresponding author: isabella.pignatelli@univ-lorraine.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cooling of steel containers in radioactive-waste storage was simulated in a step-by-step experiment from 90 to 40ºC. Among newly formed clay minerals observed in run products, cronstedtite was identified by a number of analytical techniques (powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy). Cronstedtite has not previously been recognized to be so abundant and so well crystallized in an iron—clay interaction experiment. The supersaturation of experimental solutions with respect to cronstedtite was due to the availability of Fe and Si in solution, as a result of the dissolution of iron metal powder, quartz, and minor amounts of other silicates. Cronstedtite crystals are characterized by various morphologies: pyramidal (truncated or not) with a triangular base and conical with a rounded or hexagonal cross-section. The pyramidal crystals occur more frequently and their polytypes (2M1, 1M, 3T) were identified by selected area electron diffraction patterns and by automated diffraction tomography. Cronstedtite is stable within the 90-60ºC temperature range. At temperatures of ⩽ 50ºC, the cronstedite crystals showed evidence of alteration.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2013

References

Bailey, S.W., 1969 Polytypism of trioctahedral 1:1 layer silicates Clays and Clay Minerals 17 355371.CrossRefGoogle Scholar
Bailey, S.W., 1988 Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral Clay Minerals 23 237247.CrossRefGoogle Scholar
Barber, D.J., 1981 Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites Geochimica et Cosmochimica Acta 45 945970.CrossRefGoogle Scholar
Brindley, G.W., 1982 Chemical compositions of berthierines—A review Clays and Clay Minerals 30 153155.CrossRefGoogle Scholar
Browning, L.B. McSween, H.Y. Jr. and Zolensky, M.E., 1996 Correlated alteration effects in CM carbonaceous chondrites Geochimica et Cosmochimica Acta 60 26212633.CrossRefGoogle Scholar
Burbine, T.H. and Burns, R.G., 1994 Questions concerning the oxidation of the ferrous iron in carbonaceous chondrites Lunar Planetary Science XXV 1993200.Google Scholar
de Combarieu, G. Schlegel, M.L. Neff, D. Foy, E. Vantelon, D. Barboux, P. and Gin, S., 2011 Glass-iron-clay interactions in a radioactive waste geological disposal: an integrated laboratory-scale experiment Applied Geochemistry 26 6579.CrossRefGoogle Scholar
Dornberger-Schiff, K., 1956 On Order-Disorder Structures (OD-Structures) Acta Crystallographica 9 593601.CrossRefGoogle Scholar
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie von OD-Strukturen aus Schichten. Abh. dtsch. Akad Wiss Berlin, Kl. f. Chem., 3, 107 pp.Google Scholar
Dornberger-Schiff, K., 1966 Lehrgang üer OD-Strukturen Berlin Akademine-Verlag.Google Scholar
Dornberger-Schiff, K. and Ďurovič, S., 1975 OD-interpretation of kaolinite-type structure—I: symmetry of kaolinite packets and their stacking possibilities Clays and Clay Minerals 23 219229.CrossRefGoogle Scholar
Dornberger-Schiff, K., 1979 OD structures—a game and a bit more Kristall Und Technik 14 10271045.CrossRefGoogle Scholar
Dunn, D.A., 1980 Revised techniques for quantitative calcium carbonate analysis using the “Karbonat-Bombe,” and comparisons to other quantitative carbonate analysis methods Journal of Sedimentary Research 50 631636.CrossRefGoogle Scholar
Ďurovič, S., 1981 OD-Charakter, Polytypie und Identifikation von Schichtsilikaten Fortschritte der Mineralogie 59 191226.Google Scholar
Ďurovič, S., 1997 Cronstedtite-1M and co-existence of 1M and 3T polytypes Ceramics—Silikáty 41 98104.Google Scholar
Dyl, K.A. Manning, C.E. and Young, E.D., 2010.The implication of the cronstedite in water-rich planetesimals and asteroidsGoogle Scholar
Frondel, C., 1962 Polytypism in cronstedtite American Mineralogist 47 781783.Google Scholar
Gaucher, E. Robelin, C. Matray, J.M. Négrel, G. Gros, Y. Heitz, J.F. Vinsot, A. Rebours, H. Cassagnabère, A. and Bouchet, A., 2004 ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling Physics and Chemistry of the Earth 29 5577.CrossRefGoogle Scholar
Geiger, C.A. Henry, D.L. Bailey, S.W. and Maj, J.J., 1983 Crystal structure of cronstedtite-2H2 Clays and Clay Minerals 31 97108.CrossRefGoogle Scholar
Gole, M.J., 1980 Low-temperature retrograde minerals in metamorphosed Archean banded iron-formations, Western Australia The Canadian Mineralogist 18 205214.Google Scholar
Gole, M.J., 1980 Mineralogy and petrology of very-low metamorphic grade Archean banded iron-formations, Weld Range, Western Australia American Mineralogist 65 825.Google Scholar
Guggenheim, S. Bailey, S.W. Eggleton, R.A. and Wilkes, P., 1982 Structural aspects of greenalite and related minerals The Canadian Mineralogist 20 118.Google Scholar
Hendricks, S.B., 1939 Random structures of layer minerals as illustrated by cronstedtite (2FeO·Fe2O3·SiO2·2H2O). Possible iron content of kaolin American Mineralogist 24 529539.Google Scholar
Hybler, J. Petřiček, V. Ďurovič, S. and Smrčok, L., 2000 Refinement of the crystal structure of cronstedtite-1T Clays and Clay Minerals 48 331338.CrossRefGoogle Scholar
Hybler, J. Petřiček, V. Fabry, J. and Ďurovič, S., 2002 Refinement of the crystal structure of cronstedtite-2H 2 Clays and Clay Minerals 50 601613.CrossRefGoogle Scholar
Hybler, J. Ďurovič, S. and Kogure, T., 2008 Polytypism in cronstedtite Acta Crystallographica A64 C498C499.CrossRefGoogle Scholar
Jodin-Caumon, M.C. Mosser-Ruck, R. Rousset, D. Randi, A. Cathelineau, M. and Michau, N., 2010 Effect of a thermal gradient on iron—clay interactions Clays and Clay Minerals 58 667681.CrossRefGoogle Scholar
Jodin-Caumon, M.C. Mosser-Ruck, R. Randi, A. Pierron, O. Cathelineau, M. and Michau, N., 2012 Mineralogical evolutions of a claystone after reaction with iron under thermal gradient Clays and Clay Minerals 60 443455.CrossRefGoogle Scholar
Johnson, L. Anderson, G. and Parkhurst, D., 2000 Database from ‘thermo.com.V8.R6.230 California, USA Prepared at Lawrence Livermore National Laboratory.Google Scholar
Kogure, T. Hybler, J. and Ďurovič, S., 2001 A HRTEM study of cronstedtite: determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates Clays and Clay Minerals 49 310317.CrossRefGoogle Scholar
Kogure, T. Hybler, J. and Yoshida, H., 2002 Coexistence of two polytypic groups in cronstedtite from Lostwithiel England Clays and Clay Minerals 50 504513.CrossRefGoogle Scholar
Kolb, U. Gorelik, T. Kübel, C. and Otten, M.T., 2007 Towards automated diffraction tomography: Part I—Data acquisition Ultramiscoscopy 107 507513.CrossRefGoogle ScholarPubMed
Kolb, U. Gorelik, T. and Otten, M.T., 2008 Towards automated diffraction tomography. Part II—Cell parameter determination Ultramicroscopy 108 763772.CrossRefGoogle ScholarPubMed
Lanson, B. Lantenois, S. V. Aken, P.A. Bauer, A. and Plançon, A., 2012 Experimental investigation of smectite interaction with metal iron at 80ºC: structural characterization of newly formed Fe-rich phyllosilicates American Mineralogist 97 864871.CrossRefGoogle Scholar
Lantenois, S., 2003 Réactivié fer metal/smectites en milieu hydraté à 80ºC Orleans, France Université d’Orleans.Google Scholar
Lantenois, S. Lanson, B. Muller, F. Bauer, A. Jullien, M. and Plançon, A., 2005 Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization Clays and Clay Minerals 53 597612.CrossRefGoogle Scholar
Lauretta, D.S. Hua, X. and Buseck, P.R., 2000 Mineralogy of fine-grained rims in the ALH 81002 CM chondrite Geochimica et Cosmochimica Acta 64 32633273.CrossRefGoogle Scholar
Ledésert, B. Hébert, R. Grall, C. Genter, A. Dezayes, C. Bartier, D. and Gérard, A., 2009 Calcimetry as a useful tool for a better knowledge of flow pathways in the Soultzsous-Forðs Enhanced Geothermal System Journal of Volcanology and Geothermal Research 181 106114.CrossRefGoogle Scholar
López García, J.A. Manteca, J.I. Prieto, A.C. and Calvo, B., 1992 Primera aparición en España de cronstedtita. Caracterización estructural Boletín de la Sociedad Española de Mineralogía 15- 1 2125.Google Scholar
McAlister, J.A. and Kettler, R.M., 2008 Metastable equilibria among dicarboxylic acids and the oxidation state during acqueous alteration on the CM2 chondrite parent body Geochimica et Cosmochimica Acta 72 233241.CrossRefGoogle Scholar
Miyahara, M. Uehara, S. Ohtani, E. N. T. Nishijima, M. Vashaei, Z. and Kitagawa, R., 2008 The anatomy of altered chondrules and FGRs covering hem in a CM chondrite by FIB-TEM-STEM Lunar Planetary Science XXXIX 199200.Google Scholar
Mosser-Ruck, R. Cathelineau, M. Guillaume, D. and Charpentier, D., 2010 Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite Clays and Clay Minerals 58 280291.CrossRefGoogle Scholar
Mugnaioli, E. Gorelik, T. and Kolb, U., 2009 “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique Ultramicroscopy 109 758765.CrossRefGoogle ScholarPubMed
Müller, W.F. Kurat, G. and Kracher, A., 1979 Chemical and crystallographic study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite Tschermaks Mineralogische und Petrographische Mitteilungen 26 293304.CrossRefGoogle Scholar
Parkhurst, D.L. and Appelo, C.A.J., 1999 User’s guide to PHREEQC 994259.Google Scholar
Perronnet, M. Villiéras, F. Jullien, M. Razafitianamaharavo, A. Raynal, J. and Bonnin, D., 2007 Towards a link between the energetic heterogeneities of the edge of smectites and their stability in the context of metallic corrosion Geochimica et Cosmochimica Acta 71 14631479.CrossRefGoogle Scholar
Perronnet, M. Jullien, M. Villiéras, F. Raynal, J. Bonnin, D. and Bruno, G., 2008 Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80ºC Applied Clay Science 38 187202.CrossRefGoogle Scholar
Pierron, O., 2011 Interactions eau-fer-argilite: rôle des paramètres Liquide/Roche, Fer/Argilite, Température sur la nature des phases minérales Nancy Université Henri Poincaré.Google Scholar
Rivard, C., 2011 Contribution à l’étude de la stabilité des minéraux constitutifs de l’argilite du Callovo-Oxfordien en présence de fer à 90ºC Nancy, France Institut National Polytechnique de Lorraine.Google Scholar
Rivard, C. Pelletier, M. Michau, N. Razafitianamaharavo, A. Bihannic, I. Abdelmoula, M. Ghanbaja, J. and Villiéras, F., 2013 Berthierine-like mineral formation and stability during the interaction of kaolinite with metallic iron at 90ºC under anoxic and oxic conditions American Mineralogist 98 163180.CrossRefGoogle Scholar
Rousset, D., 2002 Etude de la fraction argileuse de séquence sédimentaires de la Meuse et du Gard Strasbourg, France Université Louis Pasteur.Google Scholar
Schlegel, M.L. Bataillon, C. Benhamida, K. Blanc, C. Menut, D. and Lacour, J., 2008 Metal corrosion and argillite transformation at the water-saturated, high-temperature iron-clay interface: a microscopic-scale study Applied Geochemistry 23 26192633.CrossRefGoogle Scholar
Schulte, M. and Schock, E., 2004 Coupled organic synthesis and mineral alteration on the meterorite parent bodies Meteoritic and Planetary Science 39 15771590.CrossRefGoogle Scholar
Smrcok, L. and Weiss, Z., 1993 DIFK91: a program for the modelling of powder diffraction patterns on a PC Journal of Applied Crystallography 26 140141.CrossRefGoogle Scholar
Smrcok, L. Ďurovič, S. Petříček, V. and Weiss, Z., 1994 Refinement of the crystal structure of cronstedtite-3T Clays and Clay Minerals 42 544551.CrossRefGoogle Scholar
Steadman, R. and Nuttall, P.M., 1963 Polymorphism in cronstedtite Acta Crystallographica 16 18.CrossRefGoogle Scholar
Steadman, R. and Nuttall, P.M., 1964 Further polymorphism in cronstedtite Acta Crystallographica 17 404406.CrossRefGoogle Scholar
Sunagawa, I., 2005 Crystals. Growth, Morphology and Perfection Cambridge, UK Cambridge University Press.CrossRefGoogle Scholar
Wilson, J. C. G. Cressey, B. Cuadros, J. Ragnarsdottir, K.V. Savage, D. and Shibata, M., 2006 The effect of iron on montmorillonite stability. (II) Experimental investigation Geochimica et Cosmochimica Acta 70 323336.CrossRefGoogle Scholar
Zega, T.J. and Buseck, P.R., 2003 Fine-grained-rim mineralogy of the Cold Bokkeveld CM chondrite Geochimica et Cosmochimica Acta 67 17111721.CrossRefGoogle Scholar