Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T09:12:44.620Z Has data issue: false hasContentIssue false

Montmorillonite-Organic Complexes - Gas Chromatographic Determination of Energies of Interactions

Published online by Cambridge University Press:  01 July 2024

K. K. Bissada*
Affiliation:
Department of Earth Sciences, Washington University, St. Louis, MO. 63130
W. D. Johns
Affiliation:
Department of Earth Sciences, Washington University, St. Louis, MO. 63130
*
*Present address: Bellaire Research Laboratories, Texaco Inc., Bellaire, Texas
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gas-solid chromatographic measurements of interaction energies were made for the systems ethanol and acetone with K-, Na-, Ba-, and Ca-montmorillonites. The results revealed an increased interaction energy in the order

K-mont. < Na-mont. < Ba-mont. < Ca-mont.

Interaction energies ranged from about 14 kcal/mole for K-montmorillonite to about 30 kcal/mole for Ca-montmorillonite. A very good agreement was observed between experimental heats of adsorption values and theoretical values for the electrostatic attractive energy between the respective cations and polar molecules.

These results confirm our earlier suggestions that complex formation takes place through cation-dipole interactions and that the polar molecules solvate the exchange cations in a manner similar to the hydration of cations in aqueous solutions.

Резюме

Резюме

Были выполнены измерения энергий взаимодействия ацетона и этанола с калиевым, натриевым, бариевым и кальциевым монтмориллонитами с помощью метода газовой хромато-графии. Показано что по изменению энергии взаимодействия монтмориллониты образуют ряд: К-монтм. < Na-монтм. < Ва - монтм. < Са-монтм. Энергии взаимодействия составляют от 14 килокал./моль для К-монтмориллонита до со 30 килокал./моль для Са-монтморил-лонита. Экспериментально определенные теплоты адсорбции хорошо согласуются с теоретическими значениями энергии электростатического притяжения между соответ-ствующими катионами и полярными молекулами.

Полученные результаты подтверждают ранее высказанные автором предположения о возникновении комплексов путем катионно-дипольного взаимодействия и о сольватации полярными молекулами обменных катионов таким же путем, как происходит гидратация катионов в водных растворах.

Type
Research Article
Copyright
Copyright © 1969, The Clay Minerals Society

References

Ahrens, L. H. (1964) The significance of the chemical bond for controlling the geochemical distribution of the elements: In Physics and Chemistry of the Earth, Vol. 5, pp. 154. Macmillan, New York.Google Scholar
Belyakova, L. D., Kiselev, A. V. and Kovalova, N. V. (1964) Gas chromatographic determination of energy of hydrogen bonds in the adsorbed layers of alcohol on graphitized carbon black: Anal. Chem. 36, 15171519.CrossRefGoogle Scholar
Bissada, K. K., Johns, W. D. and Cheng, F. S. (1967) Cation-dipole interactions in clay-organic complexes: Clay Minerals 7, 155166.CrossRefGoogle Scholar
Bradley, W. F. (1945) Molecular association between montmorillonite and some polyfunctional organic liquids: J. Am. Chem. Soc. 67, 975981.CrossRefGoogle Scholar
Brindley, G. W. and Moll, W. F. Jr. (1965) Complexes of natural and synthetic Ca-montmorillonites with fatty acids: Am. Mineralogist 50, 13551370.Google Scholar
Brindley, G. W. and Ray, S. (1964) Complexes of Ca-montmorillonite with primary monohydric alcohols: Am. Mineralogist 49, 106115.Google Scholar
Dal Nogare, S. and Juvet, R. S. Jr. (1965) Gas-liquid chromatography: Theory and Practice·. Interscience, New York .Google Scholar
Dowdy, R. H. and Mortland, M. M. (1967) Alcohol- water interactions on montmorillonite surfaces: I. Ethanol: Clays and Clay Minerals 15, 259271.CrossRefGoogle Scholar
Eberly, P. E. (1961), High temperature adsorption studies on 13X molecular sieve and other porous solids by pulse flow techniques: J. Phys. Chem. 65, 6872.CrossRefGoogle Scholar
Emerson, W. W. (1957), Organo-clay complexes: Nature 180, 4849.CrossRefGoogle Scholar
Everett, D. H. and Stoddart, C. T. H. (1961) The thermodynamics of hydrocarbon solutions from G.L.C, measurements: Part I. Solution in Dinonylphthalate: Trans. Faraday Soc. 57, 746754.CrossRefGoogle Scholar
Gale, R. L. and Beebe, R. A. (1964) Determination of heats of adsorption on carbon blacks and bone mineral by chromatography using the elution pulse technique: J. Phys. Chem. 68, 555567.CrossRefGoogle Scholar
James, A. T. and Martin, A. J. P. (1952) Gas-liquid partition chromatography: A technique for the analysis of Volatile materials: Analyst 77, 915.CrossRefGoogle Scholar
Keay, J. and Wild, A. (1961) Hydration properties of vermiculite: Clay Minerals Bull. 4, 221228.CrossRefGoogle Scholar
Kiselev, A. V., Paskonova, E. A., Petrova, R. S. and Shcherbakova, K. D. (1964a) The adsorption properties of carbon blacks by the gas chromatographic method: Zh. Fiz. Khim. 38, 161169.Google Scholar
Kiselev, A. V., Petrova, R. S. and Shcherbakova, K. D. (1964b) Gas chromatographic characteristics of the unit surface of an adsorbent: Kinetics and Catalysis 5, 456461.Google Scholar
Mac Ewan, D. M. S. (1948) 1. Complexes of clays with organic compounds: Trans. Faraday Soc. 44, 349367.Google Scholar
McLellan, A. L. (1963) Tables of experimental dipole moments: Freeman & Co., New York.Google Scholar
Parfitt, R. L. and Mortland, M. M. (1968) Ketone adsorption on montmorillonite: Soil Sci. Soc. Am. Proc. 32, 355363.CrossRefGoogle Scholar
Pauling, L. (1960), The nature of the chemical bond: 3rd edn, Cornell University Press, New York.Google Scholar
White, D. and Cowan, C. T. (1958) The sorption properties of dimethyldioctadecylammonium bentonite using gas chromatography: Trans. Faraday Soc. 54.557-561.CrossRefGoogle Scholar