Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T20:16:19.691Z Has data issue: false hasContentIssue false

Modification of the Porous Structure and Surface Area of Sepiolite under Vacuum Thermal Treatment

Published online by Cambridge University Press:  02 April 2024

Y. Grillet
Affiliation:
Centre de Thermodynamique et de Microcalorimétrie du C.N.R.S., 26, rue du 141ème RIA, 13003 Marseille, France
J. M. Cases
Affiliation:
Centre de Recherche sur la Valorisation des Minérais et U.A. 235 “Minéralurgie,”, B.P. 40, 54501 Vandoeuvre Cédex, France
M. Francois
Affiliation:
Centre de Recherche sur la Valorisation des Minérais et U.A. 235 “Minéralurgie,”, B.P. 40, 54501 Vandoeuvre Cédex, France
J. Rouquerol
Affiliation:
Centre de Thermodynamique et de Microcalorimétrie du C.N.R.S., 26, rue du 141ème RIA, 13003 Marseille, France
J. E. Poirier
Affiliation:
Centre de Recherche sur la Valorisation des Minérais et U.A. 235 “Minéralurgie,”, B.P. 40, 54501 Vandoeuvre Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Modifications of the external surface area and the two types of microporosity of sepiolite (structural microporosity and inter-fiber porosity) were examined as a function of the temperature of a vacuum thermal treatment to 500°C. The methods used included: reciprocal thermal analysis, N2 and Ar low-temperature adsorption microcalorimetry, gas adsorption volumetry (for N2, Ar, and Kr at 77 K and CO2 at 273 and 293 K), water-vapor adsorption gravimetry, and immersion microcalorimetry into liquid water at 303 K. If the sample was not heated >100°C, only 20% of the structural microporosity was available to N2, whereas 52% was available to CO2 at 293 K. In both experiments, the channels filled at very low relative pressures. At >350°C, the structure transformed to anhydrous sepiolite, which showed no structural microporosity. The inter-fiber microporosity decreased from 0.031 to 0.025 cm3g (as seen with N2), and the external specific surface area decreased from 120 to 48 m2/g. The water adsorption isotherms showed a lower and lower affinity of the external surface of fibers for water as the temperature of thermal treatment increased. The thickness of the bound water on the external surface was estimated to be ≤ 3.5 monolayers, i.e., less than 10 Å.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

References

Anonymous (1976) Gas Encyclopedia: L’Air Liquide, ed., Elsevier, Amsterdam, 1150 pp.Google Scholar
Barrer, R. M. and Mackenzie, N., 1954 Sorption by atta-pulgite. I. Availability of intracrystalline channels J. Phys. Chem. 58 560568.CrossRefGoogle Scholar
Barrer, R. M., Mackenzie, N. and MacLeod, D. M., 1959 Sorption of attapulgite. II. Selectivity shown by attapulgite, sepiolite and montmorillonite for n paraffin J. Phys. Chem. 58 568573.CrossRefGoogle Scholar
Brauner, K. and Preisinger, A., 1956 Struktur und Entstehung des Sepioliths Tschermarks Miner. Petr. Mitt. .CrossRefGoogle Scholar
Brindley, G. W., 1959 X-ray and electron diffraction data for sepiolite Amer. Mineral. 44 495500.Google Scholar
Cases, J. M., 1979 Adsorption des tensio-actifs à l’interface solide-liquide: Thermodynamique et influence de l’hétérogénéité des adsorbants Bull. Minéral. 102 684707.CrossRefGoogle Scholar
Cases, J. M. and François, M., 1982 Etude des propriétés de l’eau au voisinage des interfaces Agronomie 2 931938.CrossRefGoogle Scholar
Dandy, A. J., 1968 Sorption of vapors by sepiolite J. Phys. Chem. 72 334339.CrossRefGoogle Scholar
Dandy, A. J., 1971 Zeolitic water content and adsorptive capacity for ammonia of microporous sepiolite J. Chem. Soc. A 23832387.CrossRefGoogle Scholar
Dandy, A.J. and Nadiye-Tabbiruka, M. S., 1975 The effect of heating in vacuo on the microporosity of sepiolite Clays & Clay Minerals 23 428430.CrossRefGoogle Scholar
De Boer, J. H., Lippens, B. C., Linsen, B. G., Broekhoff, J. C. P. Van den Heuwal, A. and Osinga, ThJ, 1966 The t curve of multimolecular N2 adsorption J. Colloid Interface Sci. 21 405414.CrossRefGoogle Scholar
Delon, J. F. and Cases, J. M., 1970 La mesure de la porosité d’adsorbants à canaux de diamètre constant à partir des isothermes d’adsorption de gaz J. Chimie Physique 4 662666.CrossRefGoogle Scholar
Dubinin, M. M., 1966 Modern state of the theory of gas and vapor adsorption by microporous adsorbents Pure Appl. Chem. 10 309321.CrossRefGoogle Scholar
Emmett, P. H. and Brunauer, J., 1937 The use of low temperature van der Waals adsorption isotherms in determining the surface area by ion synthetic ammonia catalyst J. Amer. Chem. Soc. 59 15531564.CrossRefGoogle Scholar
Fernandez Alvarez, T. and Serratosa, J. M., 1970 Superficie especifica y estructura de poro de la sepiolita calentada a diferentes temperatures Compte-Rendu de la Réunion Hispano-Belga de Minerales de la Arcilla Madrid Consejo Superior de Investigaciones Cientificas 202209.Google Scholar
Fernandez Alvarez, T., 1978 Effecto de la deshidratacion sobre las propriedades adsorbentes de la palygorskita y sepiolita. I. Adsorcion di nitrogeno Clay Miner. 13 325335.CrossRefGoogle Scholar
Fripiat, J. J., Cases, J. M., François, M. and Letellier, M., 1982 Thermodynamic and microdynamic behavior of water in clay suspensions and gels J. Colloid Interface Sci. 89 378400.CrossRefGoogle Scholar
Fripiat, J. J., Letellier, M. and Levitz, P., 1984 Interaction of water with clay surfaces Phil. Trans. R. Soc. London, A 311 287289.Google Scholar
Guérin, H., Siemieniewska, T., Grillet, Y. and François, M., 1970 Influence de la chimisorption d’oxygène sur la détermination de l’oxyréactivité des combustibles solides. I. Etude du semi coke de lignite préparé à 550°C Carbon 8 727740.CrossRefGoogle Scholar
Hagymassy, J., Brunauer, S. and Mikhail, R Sh, 1969 Pore structure analysis by water vapor adsorption. I. t curves for water vapor J. Colloid Interface Sci. 29 485491.CrossRefGoogle Scholar
Harkins, W. D. and Jura, G., 1944 An absolute method for the determination of the area of a finely divided crystalline solid J. Amer. Chem. Soc. 66 13621365.CrossRefGoogle Scholar
Jiménez-Lopez, A., de López-Gonzáles, D., Ramirez-Säenz, A., Rodriguez-Reinoso, F., Valenzuela-Colahorro, C. and Zurita-Herrera, L., 1978 Evolution of surface area in a sepiolite as a function of acid and heat treatment Clay Miner. 13 375385.CrossRefGoogle Scholar
Lippens, B. C. and de Boer, J. H., 1965 Studies on pore systems in catalysts. V. The t method J. Catalysis 4 319323.CrossRefGoogle Scholar
McClellan, A. L. and Harnsberger, H. F., 1967 Cross sectional areas of molecules adsorbed on solid surfaces J. Colloid Interface Sci. 23 577599.CrossRefGoogle Scholar
Mikhail, R Sh Brunauer, S. and Bodor, E. E., 1968 Investigation of a complete pore structure analysis. I. Analysis of micropores J. Colloid Interface Sci. 26 4353.CrossRefGoogle Scholar
Moller, K. P. and Kolterman, M., 1965 Gas Adsorption und Struktur von Sepiolit Z. Anorg. Allg. Chem. 41 3640.CrossRefGoogle Scholar
Nagy, B. and Bradley, W. F., 1955 The structural scheme of sepiolite Amer. Mineral. 40 885892.Google Scholar
Partyka, S., Rouquerol, F. and Rouquerol, J., 1979 Calorimetric determination of surface areas. Possibilities of a modified Harkins and Jura procedure J. Colloid Interface Sci. 68 2131.CrossRefGoogle Scholar
Pauling, L., 1940 The Nature of the Chemical Bond Ithaca, New York Cornell Univ. Press.Google Scholar
Preisinger, A., Swineford, A. and Franks, P. C., 1963 Sepiolite and related compounds. Its stability and applications Clays and Clay Minerals, Proc. 10th Natl. Conf, Austin, Texas, 1961 New York Pergamon Press 365371.Google Scholar
Prost, R., 1975 Etude de l’hydratation des argiles. Interactions eau-minéral et mécanisme de la rétention de l’eau Ann. Agron. 26 401461.Google Scholar
Rautureau, M. and Mifsud, A., 1977 Etude par microscopie électronique des différents états d’hydratation de la sépio-lite Clay Miner. 12 309318.CrossRefGoogle Scholar
Rautureau, M. and Tchoubar, C., 1976 Structural analysis of sepiolite by selected area electron diffraction. Relations with physicochemical properties Clays & Clay Minerals 24 4349.CrossRefGoogle Scholar
Rouquerol, J., 1970 L’analyse thermique à vitesse de décomposition constante J. Thermal Analysis 2 123140.CrossRefGoogle Scholar
Rouquerol, J., 1972 Calorimétrie d’Adsorption aux Basses Températures. I. Thermochimie Paris CNRS Pub..Google Scholar
Rouquerol, J., 1987 Reciprocal thermal analysis. The hidden face of thermal analysis Thermochimica Acta .Google Scholar
Rouquerol, J. and Davy, L., 1978 Automatic gravimetric apparatus for recording adsorption isotherms of gases or vapours onto solids Thermodynamica Acta 24 391397.CrossRefGoogle Scholar
Rouquerol, J., Rouquerol, F., Grillet, Y., Torralvo, M. J., Myers, A. L. and Belfort, G., 1984 Influence of the orientation of the nitrogen molecule upon its actual cross-sectional area in the adsorbed monolayer Fundamentals of Adsorption New York Engineering Foundation 501512.Google Scholar
Sing, K. S. W., 1967 Assessment of microporosity Chemistry and Industry 829830.Google Scholar
Sing, K. S. W. Everett, D. H., Haul, R. A. W. Moscou, L., Pierotti, R. A., Rouguerol, J. and Siemieniewska, T., 1985 Reporting physisorption data for gas/solid systems. IUPAC recommendation Pure Appl. Chem. 57 603619.CrossRefGoogle Scholar