Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T05:00:37.601Z Has data issue: false hasContentIssue false

Modeling Boron Adsorption on Kaolinite

Published online by Cambridge University Press:  28 February 2024

Shivi P. N. Singh
Affiliation:
United Engineers and Constructors, Denver, Colorado 80217
Shas V. Mattigod
Affiliation:
Pacific Northwest Laboratories, Battelle, Richland, Washington 99352
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Boron adsorption at constant ionic strength [0.09 ± 0.01 moles/liter of KClO4 or Ca(ClO4)2] on 0.2−2 μm clay fraction of pretreated kaolinite was modeled using both phenomenological equations and surface complexation reactions. Phenomenological equations were expressed as linear relationships between the distribution coefficient and adsorption density or equilibrium concentration. The normalized form of the isotherms allowed the distribution coefficient to be predicted over a wide range of adsorption densities or equilibrium concentrations and pH. The Langmuir isotherm revealed a weak two-part linear trend supported by a similar behavior of the van Bemmelen-Freundlich isotherm. Potential adsorption mechanisms were assessed from these isotherms. The bases for the inner-sphere (surface coordination) and outer-sphere (ion-pair) surface reactions were postulated, and equations were developed and incorporated into the generalized triple-layer surface-complexation model [TL(g)-SCM]. Boron adsorption was best modeled using the inner-sphere complexes. The results confirm that the generalized triple-layer surface-complexation model can provide information regarding plausible reactions at the substrate/aqueous interface. Intrinsic constants for postulated surface reactions were derived as fitting parameters over a range of pH and initial boron concentrations.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Alwitt, R. S., The point of zero charge of pseudo-boehmite J Colloid Interface Sci. 1972 40 195198 10.1016/0021-9797(72)90008-2.CrossRefGoogle Scholar
Baes, C. F. Jr. and Mesmer, R. E., The Hydrolysis of Cations 1976 New York John Wiley.Google Scholar
Balistrieri, L. and Murray, J. W., Surface of geothite in seawater Chemical Modelling in Aqueous Systems 1979 93 275298 10.1021/bk-1979-0093.ch014.Google Scholar
Bassett, R. L., The Geochemistry of Boron in Thermal Waters 1976 Stanford, California Stanford University.Google Scholar
Beyrouty, C. A., van Scoyoc, G. E. and Feldkamp, J. R., Evidence supporting specific adsorption of boron on synthetic aluminum hydroxides Soil Sci. Soc. Am. J. 1984 48 284287 10.2136/sssaj1984.03615995004800020010x.CrossRefGoogle Scholar
Blesa, M. A., Maroto, A J G and Regazzoni, A. E., Boric acid adsorption on magnetite and zirconium dioxide J. Colloid Interface Sci. 1984 99 3240 10.1016/0021-9797(84)90082-1.CrossRefGoogle Scholar
Byrne, R. H. and Kester, D. R., Inorganic speciation of boron in sea water J. Mar. Res. 1974 32 119127.Google Scholar
Chan, D., Perram, J. W. and White, L. R., Regulation of surface potential of amphoteric surfaces during particle-particle interaction J. Chem. Soc. Faraday Trans. 1975 171 10461057 10.1039/f19757101046.CrossRefGoogle Scholar
Davies, C. W., Ion Association 1962 London Butterworths.Google Scholar
Davis, J A J R O and Leckie, J. O., Surface ionization and complexation at the oxide/water interface. 1. Computation of electrical double layer properties in simple electrolytes J. Colloid Interface Sci. 1978 63 480499 10.1016/S0021-9797(78)80009-5.CrossRefGoogle Scholar
Davis, J. A. and Leckie, J. O., Surface ionization and complexation at the oxide/water interface. 2. Surface properties of amorphous iron oxyhydroxide and metal ions J. Colloid Interface Sci. 1978 67 90107 10.1016/0021-9797(78)90217-5.CrossRefGoogle Scholar
Davis, J. A., Leckie, J. O. and Jenne, E. A., Speciation of adsorbed ions at the oxide/water interface Chemical Modelling in Aqueous Systems 1979 290320.CrossRefGoogle Scholar
Davis, J. A. and Leckie, J. O., Surface ionization and complexation at the oxide/water interface. 3. Adsorption of anions J. Colloid Interface Sci. 1980 74 3253 10.1016/0021-9797(80)90168-X.CrossRefGoogle Scholar
Fricke, R. and Leonhardt, I., Isoelectrischer Punkt und Pufferlösung Die Naturwissenschaften 1950 37 428.Google Scholar
Goldberg, S. and Glaubig, R. A., Boron adsorption on aluminum and iron oxide minerals Soil Sci. Soc. Am. J. 1985 49 13741379 10.2136/sssaj1985.03615995004900060009x.CrossRefGoogle Scholar
Goldberg, S. and Glaubig, R. A., Boron adsorption and silicon release by minerals kaolinite, montmorillonite, and illite Soil Sci. Soc. Am. J. 1986 50 14421448 10.2136/sssaj1986.03615995005000060013x.CrossRefGoogle Scholar
Grahame, D. C., The electrical double layer and the theory of electrocapillarity Chem. Rev. 1947 41 441501 10.1021/cr60130a002.CrossRefGoogle ScholarPubMed
Hachiya, K., Sasaki, M., Ikeda, T., Mikami, N. and Yasunaga, T., Static and kinetic studies of adsorption-desorption of metal ions on γ-Al2O3 surface. 2. Kinetic study by means of pressure jump technique J. Phys. Chem. 1984 88 2731 10.1021/j150645a008.CrossRefGoogle Scholar
Hayes, K. F. and Leckie, J. O., Mechanism of lead, iron adsorption at the goethite water interface, Geochemical processes at mineral surfaces ACS Symposium Series 1986 323 116141.Google Scholar
Hayes, K. F. and Leckie, J. O., Modelling ionic strength effects on cation adsorption at the hydrous oxide/solution interface J. Colloid Interface Sci. 1987 115 564572 10.1016/0021-9797(87)90078-6.CrossRefGoogle Scholar
Hayes, K. F., Papelis, C. and Leckie, J. O., Modelling ionic strength effects on anion adsorption at hydrous oxide/ solution interfaces J. Colloid Interface Sci. 1988 125 717726 10.1016/0021-9797(88)90039-2.CrossRefGoogle Scholar
Hingston, F. J., Reactions between boron and clays Aust. J. Soil Res. 1964 2 8395 10.1071/SR9640083.CrossRefGoogle Scholar
Hingston, F. J., Atkinson, R. J., Posner, A. M. and Quirk, J. P., Specific adsorption of anions Nature 1967 215 14591461 10.1038/2151459a0.CrossRefGoogle Scholar
Keren, R. and Mezuman, U., Boron adsorption by clay minerals using a phenomenological equation Clays & Clay Minerals 1981 29 198204 10.1346/CCMN.1981.0290305.CrossRefGoogle Scholar
Mattigod, S. V., Frampton, J. A. and Lim, C. H., Effect of ion-pair formation on boron adsorption by kaolinite Clays & Clay Minerals 1985 33 433437 10.1346/CCMN.1985.0330509.CrossRefGoogle Scholar
Mesmer, R. E., Baes, C. F. and Sweeton, F. H., Acidity measurements at elevated temperatures Inorg. Chem. 1972 11 537543 10.1021/ic50109a023.CrossRefGoogle Scholar
Reardon, E. J., Dissociation constants for alkali earth and sodium borate ion pairs from 10° to 50°C Chem. Geol. 1976 18 309325 10.1016/0009-2541(76)90013-9.CrossRefGoogle Scholar
Richter, R., Chemical speciation of fly ash pond leachate in the underlying soil/water system with emphasis on the adsorption of nickel by oxides 1987 South Bend, Indiana Department of Civil Engineering, University of Notre Dame.Google Scholar
Riese, A. C., Adsorption of radium and thorium onto quartz and kaolinite, a comparison of solution/surface equilibria models 1982 Golden, Colorado Colorado School of Mines.Google Scholar
Schindler, P. W. H. G., Acid-base reactions of TiO, suspensions Kolloid Z. Z. Polym. 1972 250 759763 10.1007/BF01498568.CrossRefGoogle Scholar
Sigg, L. and Stumm, W., The interaction of anions and weak acids with the hydrous goethite [α-FeOOH] surface Colloid Surf. 1981 2 101117 10.1016/0166-6622(81)80001-7.CrossRefGoogle Scholar
Sims, J. R. and Bingham, F. T., Retention of boron by layer silicates, sesquioxides, and soil minerals: I. Layer silicates Soil Sci. Soc. Amer. Proc. 1967 31 728732 10.2136/sssaj1967.03615995003100060010x.CrossRefGoogle Scholar
Sposito, G., The Surface Chemistry of Soils 1984 New York Oxford Univ. Press.Google Scholar
Sposito, G., Holtzclaw, K. M., Johnston, C. T. and LeVeque-Madore, C. S., Thermodynamics of sodium-copper exchange on Wyoming bentonite at 298°K Soil Sci. Soc. Amer. J. 1981 47 5156 10.2136/sssaj1983.03615995004700010010x.CrossRefGoogle Scholar
Stumm, W., Hohl, H. and Dalang, F., Interaction of metal ions with hydrous oxide surfaces Croat. Chem. Acta. 1976 48 491504.Google Scholar
Stumm, W., Huang, C. P. and Jenkins, S. R., Specific chemical interaction affecting the stability of dispersed systems Croat. Chem. Acta. 1970 42 223245.Google Scholar
Stumm, W., Krummert, R. and Sigg, L., A ligand exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces Croat. Chem. Acta. 1980 53 291312.Google Scholar
Swallow, K. C., Hume, D. N. and Morel, F. M. M., Sorption of copper and lead by hydrous ferric oxide Environ. Sci. & Techn. 1980 14 13261331 10.1021/es60171a003.CrossRefGoogle Scholar
Westall, J. C., (1982) FITEQL: a computer program for determination of chemical equilibrium constants from experimental data: Rep. 82-01, Dept. of Chemistry, Oregon State University, Corvallis.Google Scholar
Yates, D. E., Levine, S. E. and Healy, T. W., Site-binding model of the electric double layer at the oxide/ water interface J. Chem. Soc. Faraday Trans. 1974 70 18071818 10.1039/f19747001807.CrossRefGoogle Scholar
Zachara, J. M., Cowan, C. E., Schmidt, R. L. and Ainsworth, C. C., Chromate adsorption by kaolinite Clays & Clay Minerals 1988 36 317326 10.1346/CCMN.1988.0360405.CrossRefGoogle Scholar
Zachara, J. M., Girvin, D. C., Schmidt, R. I. and Resch, C. T., Chromate adsorption on amorphous iron oxy-hydroxide in presence of major groundwater ions Environ. Sci. & Techn. 1987 21 589594 10.1021/es00160a010.CrossRefGoogle Scholar