Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T01:48:37.786Z Has data issue: false hasContentIssue false

Mixed Layering of Illite-Smectite: Results from High-Resolution Transmission Electron Microscopy and Lattice-Energy Calculations

Published online by Cambridge University Press:  28 February 2024

Juan Olives
Affiliation:
CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille cedex 09, France
Marc Amouric
Affiliation:
CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille cedex 09, France
Régis Perbost
Affiliation:
CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille cedex 09, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mixed layering of illite-smectite was studied both experimentally, by using high-resolution transmission electron microscopy (HRTEM) and analytical electron microscopy (AEM), and theoretically, by using lattice-energy calculations.

Samples from a hydrothermal origin show the transformation of smectite to illite with different ordering types in the illite-smectite layer sequences. Ordering ranges from complete disordered (Reichweite, R = 0 type) in the less transformed samples to increased local order, with IS and IIS sequences (R = 1 and R = 2, respectively; I = illite, S = smectite) in more illitized samples.

Lattice-energy calculations are used to determine the structure of the illite-smectite sequence, which corresponds to the minimum energy. The unit layers are: O0.5TI′TO0.5 (O, T, and I′, respectively, denote the octahedral and tetrahedral sheets, and the interlayer. The 0.5 signifies half of the octahedral cations.) For example, the arrangements of the perfectly ordered … ISIS … and … IISIIS … sequences are respectively … OM(TI′T)IOM(TI′T)S … and … OM(TI′T)IOI(TI′T)1OM(TI′T)S … (the subscripts I, S, and M, respectively, refer to compositions of illite, smectite, and midway between at 0.5). Such arrangements produce a polar model for TOT layers, which display a TIOMTS structure in the case of IS adjacent layers. Furthermore, the lattice energies of … ISIS … and … IISIIS … are found to be nearly equal to the corresponding sums of the lattice energies of illite and smectite. This result indicates that interstratified illite-smectite and the two-phase assemblage of illite + smectite have similar stabilities.

On the basis of the above model, the solid-state transformation of one smectite layer to one illite layer, which produces mixed-layer sequences, involves the transformation of an O0.5TI′TO0.5 unit of smectite into the same corresponding unit of illite.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Ahn, J.H. and Peacor, D.R., 1989 Illite/smectite from Gulf Coast shales: A reappraisal of transmission electron microscope images Clays and Clay Minerals 37 542546 10.1346/CCMN.1989.0370606.Google Scholar
Altaner, S.P. and Ylagan, R.F., 1997 Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533 10.1346/CCMN.1997.0450404.CrossRefGoogle Scholar
Altaner, S.P. Weiss, C.A. and Kirkpatrick, R.J., 1988 Evidence from 29Si NMR for the structure of mixed-layer illite/ smectite clay minerals Nature 331 699702 10.1038/331699a0.CrossRefGoogle Scholar
Amouric, M. and Olives, J., 1991 Illitization of smectite as seen by high-resolution transmission electron microscopy European Journal of Mineralogy 3 831835 10.1127/ejm/3/5/0831.CrossRefGoogle Scholar
Amouric, M. and Olives, J., 1998 Transformation mechanisms and interstratification in conversion of smectite to kaolinite: An HRTEM study Clays and Clay Minerals 46 521527 10.1346/CCMN.1998.0460505.CrossRefGoogle Scholar
Amouric, M. Baronnet, A. and Finck, C., 1978 Polytypisme et désordre dans les micas dioctaédriques synthétiques; étude par imagerie de réseau Materials Research Bulletin 13 627634 10.1016/0025-5408(78)90188-5.CrossRefGoogle Scholar
Amouric, M. Mercuriot, G. and Baronnet, A., 1981 On computed and observed HRTEM images of perfect mica polytypes Bulletin de Minéralogie 104 298313.CrossRefGoogle Scholar
Barron, P.E. Slade, P. and Frost, R.L., 1985 Ordering of aluminium in tetrahedral sites in mixed-layer 2:1 phyllosilicates by solid-state high-resolution NMR Journal of Physical Chemistry 89 38803885.CrossRefGoogle Scholar
Bertaut, F., 1952 L’énergie électrostatique de réseaux ioniques Le Journal de Physique et le Radium 13 499505 10.1051/jphysrad:019520013011049900.CrossRefGoogle Scholar
Buatier, M.D. Peacor, D.R. and O’Neil, J.R., 1992 Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature Clays and Clay Minerals 40 6580 10.1346/CCMN.1992.0400108.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W., 1975 The quantitative analysis of thin specimens Journal of Microscopy 103 203207 10.1111/j.1365-2818.1975.tb03895.x.CrossRefGoogle Scholar
Dong, H. Peacor, D.R. and Freed, R.L., 1997 Phase relations among smectite, R1 illite-smectite, and illite American Mineralogist 82 379391 10.2138/am-1997-3-416.CrossRefGoogle Scholar
Eggleton, R.A. and Banfield, J.E., 1985 The alteration of granitic biotite to chlorite American Mineralogist 70 902910.Google Scholar
Ewald, P.P., 1921 Die berechnung optischer und elektrostatischer gitterpotentiale Annalen der Physik 64 253287 10.1002/andp.19213690304.CrossRefGoogle Scholar
Guthrie, G.D. and Veblen, D.R., 1989 High-resolution transmission electron microscopy of mixed-layer illite/smectite: Computer simulations Clays and Clay Minerals 37 111 10.1346/CCMN.1989.0370101.CrossRefGoogle Scholar
Guthrie, G.D. and Veblen, D.R., 1990 Interpreting one-dimensional high-resolution transmission electron micrographs of sheet silicates by computer simulations American Mineralogist 75 276288.Google Scholar
Güven, N., 1991 On the definition of illite/smectite mixedlayer Clays and Clay Minerals 39 661662 10.1346/CCMN.1991.0390613.CrossRefGoogle Scholar
Huggett, J.M., 1995 Formation of authigenic illite in palaeocene mudrocks from the central North Sea: A study by high resolution electron microscopy Clays and Clay Minerals 43 682692 10.1346/CCMN.1995.0430604.CrossRefGoogle Scholar
Iijima, S. and Buseck, P.R., 1978 Experimental study of disordered mica structures by high-resolution electron microscopy Acta Crystallographica A 34 709719 10.1107/S0567739478001473.CrossRefGoogle Scholar
Inoue, A. and Utada, M., 1983 Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan Clays and Clay Minerals 31 401412 10.1346/CCMN.1983.0310601.CrossRefGoogle Scholar
Inoue, A. Kohyama, N. Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays and Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Jakobsen, H.J. Nielsen, N.C. and Lindgreen, H., 1995 Sequences of charged sheets in rectorite American Mineralogist 80 247252 10.2138/am-1995-3-406.CrossRefGoogle Scholar
Jenkins, H.D.B. and Hartman, P., 1979 A new approach to the calculation of electrostatic energy relations in minerals: The dioctahedral and trioctahedral phyllosilicates Philosophical Transactions of the Royal Society of London A 293 169208 10.1098/rsta.1979.0088.Google Scholar
Jiang, W.T. Peacor, D.R. Merriman, R.J. and Roberts, B., 1990 Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite Clays and Clay Minerals 38 449468 10.1346/CCMN.1990.0380501.CrossRefGoogle Scholar
Madelung, E., 1918 Das elektrische feld in systemen von regelmäßig angeordneten punktladungen Physikalische Zeitschrift 19 524532.Google Scholar
Murakami, T. Sato, T. and Watanabe, T., 1993 Microstructure of interstratified illite/smectite at 123K: A new method for HRTEM examination American Mineralogist 78 465468.Google Scholar
Olives, J., 1985 Biotites and chlorites as interlayered biotitechlorite crystals Bulletin de Minéralogie 108 635641.CrossRefGoogle Scholar
Olives, J., 1986 The Ewald energies of complex crystals: The “biochlorites” Acta Crystallographica A 42 340344 10.1107/S0108767386099154.CrossRefGoogle Scholar
Olives, J., 1986 The electrostatic lattice energy Physica Status Solidi (b) 138 457464 10.1002/pssb.2221380209.CrossRefGoogle Scholar
Olives, J., 1987 The electrostatic energy of a lattice of point charges Annales de I’lnstitut Henri Poincaré, Physique Théorique 47 125184.Google Scholar
Olives, J. Amouric, M., Jouffrey, B. and Colliex, C., 1994 Transformation of smectite into illite and illite-smectite interstratification: HRTEM observations and lattice energies calculations Electron Microscopy 1994, Proceedings of the 13th International Congress on Electron Microscopy, Volume 2B Paris Les Editions de Physique 12811282.Google Scholar
Olives, J. Amouric, M. and Merlino, S., 1994 Illite-smectite interstratified minerals in the smectite-to-illite transition Abstracts of the 16th General Meeting of the International Mineralogical Association Pisa Societa Italiana di Mineralogia e Petrologia 309310.Google Scholar
Olives, J. Amouric, M. de Fouquet, C. and Baronnet, A., 1983 Interlayering and interlayer slip in biotite as seen by HRTEM American Mineralogist 68 754758.Google Scholar
Reynolds, R.C., Brindley, G.W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Reynolds, R.C., 1992 X-ray diffraction studies of illite/smectite from rocks, <1 μm randomly oriented powders, and <1 μm oriented powder aggregates: The absence of laboratory-induced artifacts Clays and Clay Minerals 40 387396 10.1346/CCMN.1992.0400403.CrossRefGoogle Scholar
Sidorenko, O.V. Zvyagin, B.B. and Soboleva, S.V., 1975 Crystal structure refinement for 1M dioctahedral mica Soviet Physics, Crystallography 20 332335.Google Scholar
Środoń, J., 1984 X-ray powder diffraction identification of illitic materials Clays and Clay Minerals 32 337349 10.1346/CCMN.1984.0320501.CrossRefGoogle Scholar
Sudo, T. Hayasi, H. Shimoda, S. and Swineford, A., 1962 Mineralogical problems of intermediate clay minerals Proceedings of the 9th National Conference on Clays and Clay Minerals, Lafayette, Indiana, 1960 New York Pergamon Press 378388.Google Scholar
Veblen, D.R. and Buseck, P.R., 1980 Microstructures and reaction mechanisms in biopyriboles American Mineralogist 65 599623.Google Scholar
Veblen, D.R. Guthrie, G.D. Livi, K.J.T. and Reynolds, R.C., 1990 High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results Clays and Clay Minerals 38 113 10.1346/CCMN.1990.0380101.CrossRefGoogle Scholar