Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T05:55:51.776Z Has data issue: false hasContentIssue false

Mineralogical Interference on Kaolinite Crystallinity Index Measurements

Published online by Cambridge University Press:  28 February 2024

Patricia Aparicio
Affiliation:
Departmento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
Emilio Galán
Affiliation:
Departmento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study examines the influence of minerals and amorphous phases associated with kaolin and kaolinitic rocks on kaolinite crystallinity indices (KCI) derived from X-ray diffraction (XRD) data in order to select the best index for systematic studies of commercial kaolins or geological sequences. For this purpose, 8 kaolins of differing structural order were chosen and used to prepare mixtures containing different weight fractions of quartz, feldspar, illite, smectite, chlorite, halloysite and iron hydroxide and silica gels. An additional 17 samples of kaolin were also studied to test the results and evaluate the restrictions. KCIs used included Hinckley (HI), Range and Weiss (QF), Liètard (R2), Stoch (IK), Hughes and Brown (H&B) and Amigó et al. (full width at half maximum, FWHM), and the “expert system” of Plançon and Zacharie.

Based on more than 15,000 KCI determinations, the HI and QF are influenced by quartz, feldspar, iron hydroxide gels, illite, smectite and halloysite. IK can be used in the presence of quartz, feldspar and iron hydroxide and silica gels. Also, R2 is the only KCI that could be measured in the presence of halloysite; FWHM indices should not be used in the presence of chlorite and/or halloysite; and H&B should only be used with pure kaolinite samples. The “expert system” of Plançon and Zacharie is strongly affected by the presence of other mineral phases, particularly with more than 25% of well-ordered kaolinite. Their system is less sensitive to other mineral phases when only disordered kaolinite is present, and it should not be used with kaolinite of medium order-disorder because the well-ordered phase is present in an inappreciable proportion (<10%). KCI is only measurable in kaolinitic rocks if kaolinite is >20 wt% and the precision increases with an increase in the quantity of kaolinite. In all cases, the reliability will depend on the other minerals present. When a KCI can be measured accurately, the others can be obtained by using the empirical relationships reported in this paper.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Amigó, J.M. Bastida, J. García Agramut, M.J. Sanz, M. Galván, J., Galán, E. Pérez-Rodríguez, J.L. and Cornejo, J., 1987 Crystallinity of Lower Cretaceous kaolinites of Teruel EUROCLAY Conf. 7475.Google Scholar
Artioli, G. Belloto, M. Gualtieri, A. and Pavese, A., 1995 Nature of structural kaolinites: A new model based on computer simulation of powder diffraction data and electrostatic energy calculation Clays Clay Miner 4 438445 10.1346/CCMN.1995.0430407.CrossRefGoogle Scholar
Bristow, C.M., 1993 The genesis of China Clays of South-West England. A multistage story 171203.CrossRefGoogle Scholar
Bundy, W.M. Johns, W.D. and Murray, H.H., 1963 Physico chemical properties of kaolinite and relationship to paper coating quality TAPPI 48 688696.Google Scholar
Cases, J.M. Liètard, O. Yvon, J. and Delon, J.F., 1982 Étude des propiértés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées Bull Mineral 105 439455.Google Scholar
Chàvez, C.L. and Johns, W., 1995 Mineralogical and ceramic properties of refractory clays from central Missouri (USA) Appl Clay Sci 9 407424 10.1016/0169-1317(95)00004-N.CrossRefGoogle Scholar
Drits, V. and Tchoubar, C., 1990 The modellization method in the determination of structural characteristic of some layer silicates: internal structure of the layer, nature and distribution of stacking faults X-ray diffraction by disorded lamellar structures. Theory and applications to micro divided silicates and carbons Berlin Springer-Verlag 231253.Google Scholar
Ferraro, J. and Kubler, B., 1964 Presence de dickite dans les gres Cambrienes d’Hassi Messaoud Bull Serv Carte Geol Alsace-Lorraine 17 247261 10.3406/sgeol.1964.1274.Google Scholar
Galán, E. and Tesis, D., 1975 Caolines españoles. Geología, mineralogía y génesis Soc Esp Ceram Vidr Madrid .Google Scholar
Galán, E. Aparicio, P. La González, I. and Iglesia, A., 1994 Influence of associated components of kaolin on the degree of disorder of kaolinite as determined by XRD. Geologica Car-phatica Series Clays 45 5975.Google Scholar
Galán, E. Aparicio, P. González, I. and Miras, A., 1998 Contribution of multivariate analysis to the correlation of some properties of kaolin with its mineralogical and chemical composition Clay Miner 33 6575 10.1180/000985598545435.CrossRefGoogle Scholar
Galán, E. and Martin Vivaldi, J.L., 1973 Caolines españoles. Geo-logía, mineralogía y génesis (I) Bol Soc Esp Ceram Vidr 12 7998.Google Scholar
Galán, E. Mattias, P.P. Galván, J. and Galán, E., 1977 Correlation about kaolin genesis and age of some Spanish kaolinites Proc 8th Int Symp and Meet on Alunite; Madrid-Rome Madrid Ministerio de Industria y Energía.Google Scholar
Gomes, C. Velho, J.A. and Delgado, H., 1990 Kaolin deposits of Portugal Geociências Rev Univ Aveiro 5 7589.Google Scholar
Gomes, C. Velho, J. and Guimaraes, F., 1994 Kaolin deposit of Mevaiela (Angola) alteration product of anorthosite: Assessment of kaolin potentialities for applications in paper Appl Clay Sci 9 97106 10.1016/0169-1317(94)90029-9.CrossRefGoogle Scholar
González, I. Aparicio, P. and Galán, E., 1997 Correlation between the most frequently used XRD crystallinity indices for kaolinite. Their accuracy and reproducibility Abstr 11th Int Clay Conf. .Google Scholar
Hinckley, D., 1963 Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina Clays Clay Miner 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Hughes, J.C. and Brown, G., 1979 A crystallinity index for soil kaolins and its relation to parent rock, climate and soil nature J Soil Sci 30 557563 10.1111/j.1365-2389.1979.tb01009.x.CrossRefGoogle Scholar
Kerr, P.F., 1949 Reference clay minerals: Preliminary report American Petroleum Institute .Google Scholar
Köster, H.M. Brandi, M., Stor, E. Henning, K.H. and Adolphi, P., 1991 Mineralogy and geochemistry of primary kaolins and related kaolinitic clays in NE-Ba-varia Proc 7th Euroclay Conference 641647.Google Scholar
Kotz, S. and Johnson, N.I., 1983 Encyclopedia of statistical sciences New York J Wiley.Google Scholar
La Iglesia, A. and Aznar, A.J., 1996 Crystallinity variations in kaolinite induced by grinding and pressure treatments J Mater Sci 3117 46714677 10.1007/BF00366368.CrossRefGoogle Scholar
Liètard, O., 1977 Contribution à l’étude des propiétés phisi-cochimiques, cristallographiques et morphologiques des kaolins [Ph. D. thesis] .Google Scholar
Mattias, P. Crocetti, G. Barrese, E. and Falco, F., 1994 Halloysite and other hydrothermal related minerals of Capalbio Gros-seto (Tuscani-Central Italy) Abstr 16th General Meet IMA 269270.Google Scholar
Martin Vivaldi, J.L. and Linares González, J., 1969 Las bentonitas de Cabo de Gata III. Consideraciones sobre la mineralogi’a y génesis de los yacimientos estudiados Bol Geol y Min LXXX-I 7480.Google Scholar
Martin Vivaldi, J.L. Pozzuoli, A. Mattias, P. Galan Huertos, E. and Serratosa, J.M., 1972 The swelling of layer minerals: I-Interaction with DMSO and NMFA Preprints Int Clay Conf: 1972 455468.Google Scholar
Martín Pozas, J.M. and Saja, J., 1975 Análisis cuantitativo de fases cris-talinas por DRX Método de Debey-Scherrer .Google Scholar
Maxwell, D.T. and Hower, J., 1967 High-grade diagenesis and low-grade metamorphism in the Precambrian Belt series Am Mineral 52 843857.Google Scholar
Mesa, J.M., 1986 Contribución al estudio mineralógico de las pizarras alumínicas (Tierras Biancas) del Paleozoico de la provincia de Badajoz. [Ph. D. thesis] Univ de Sevilla .Google Scholar
Montgomary, D.C., 1976 Design and analysis of experiments New York J. Wiley.Google Scholar
Muller, R.G., 1981 Simultaneous statistical inference Berlin Springer Verlag 165172 10.1007/978-1-4613-8122-8.CrossRefGoogle Scholar
Murray, H.H. Lyons, S.C. and Swineford, A., 1956 Correlation of paper-coating quality with degree of crystal perfection of kaolinite Clays Clay Miner, Proc 4th Natl Conf .CrossRefGoogle Scholar
Nieto, F. and Rodríguez Gallego, M., 1981 Alteración experimental de cloritas Revista de la Academia de Ciencias de Granada 1 108124.Google Scholar
Patterson, S.H. Murray, H.H. and Lefond, S.J., 1975 Clays Industrial minerals and rocks New York AIME 519585.Google Scholar
Plançon, A. and Zacharie, C., 1990 An expert system for the structural characterization of kaolinites Clay Miner 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Range, K.J. and Weiss, A.. 1969. Uber das Verhalten von kaolinitit bei hohen Drücken. Ber Deut Keram Ges 46:231—288.Google Scholar
Rodríguez Jimenez, P. and Ruiz Cruz, M.D., 1988 Mineralogía y génesis de las arcillas de las unidades del campo de Gibraltar. I. Areniscas del Aljibe Estudios Geológicos 44 3146.Google Scholar
Ruiz Cruz, M.D., 1994 Diagenetic development of clay and related minerals in deep water sandstones (S. Spain): Evidence of lithological control Clay Miner 29 93104 10.1180/claymin.1994.029.1.11.CrossRefGoogle Scholar
Schroeder, R.J. and Hayes, J.B., 1968 Dickite and kaolinite in Penn-sylvanian limestone of southeastern Kansas Clays Clay Miner 16 4149 10.1346/CCMN.1968.0160106.CrossRefGoogle Scholar
Schultz, L.G., 1964 Quantitative interpretation of mineralogi-cal composition from X-ray and chemical data for the Pierre Shale .CrossRefGoogle Scholar
Stoch, L., 1974 Mineraly Ilaste (“Clay Minerals”) Warsaw Geological Publishers 186193.Google Scholar
Van Olphen, H. and Fripiat, J.J., 1979 Data handbook for clay materials and other non-metallic minerals Oxford Pergamon Pr.Google Scholar
Velho, J.A. and Gomes, C., 1991 Characterization of Portuguese kaolins for the paper industry: Beneficiation through new delamination techniques Appl Clay Sci 6 155170 10.1016/0169-1317(91)90005-T.CrossRefGoogle Scholar
Yvon, J. Cases, J.M. Liètard, O. Garin, P. and Lhote, F., 1980 Influence des propriétés des charges kaolinitiques sur les performances des caoutchoucs naturels charges Clay Miner 15 351368 10.1180/claymin.1980.015.4.03.CrossRefGoogle Scholar