Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:08:42.736Z Has data issue: false hasContentIssue false

Mineral-Content and Particle-Size Effects on the Colloidal Properties of Concentrated Lateritic Suspensions

Published online by Cambridge University Press:  28 February 2024

A. Cerpa
Affiliation:
Instituto de Ciencia de Materiales de Madrid, (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
M. T. García-González
Affiliation:
Centro de Ciencias Medioambientales de Madrid, (CSIC), Serrano 115 Dpdo, 28006 Madrid, Spain
P. Tartaj
Affiliation:
Instituto de Ciencia de Materiales de Madrid, (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
J. Requena
Affiliation:
Instituto de Ciencia de Materiales de Madrid, (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
L. Garcell
Affiliation:
Facultad de Ingeniera Química, Universidad de Oriente, Ave. Las Américas s/n, Santiago de Cuba, Cuba
C. J. Serna
Affiliation:
Instituto de Ciencia de Materiales de Madrid, (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rheological behavior of concentrated lateritic suspensions from Cuba is affected by mineral composition and particle size. Electrophoretic mobility and yield stress were considered. The lateritic samples were found to be mostly composed of mixtures of serepentine and goethite in varying proportions. The flow properties of the lateritic suspensions are strongly affected by the mineral composition and particle size. This result was determined by comparison of flow properties of the bulk sample and the colloidal fraction. The electrokinetic curves suggest that heterocoagulation is present in all samples, with a zeta potential minimum at the isoelectric point (IEP), which varies with the serpentine to goethite ratio. A relationship between yield stress (τ0) and the sample volume fraction (ϕ) and particle size (d) was obtained at the IEP from the expression τ0 = kϕ3/d0.5, with the constant k dependent on the sample serpentine to goethite ratio.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Arias, M. Barrai, M.T. and Diaz-Fierros, F., 1995 Effects of iron and aluminum oxides on the colloidal and surface properties of kaolin Clays and Clay Minerals 43 406416 10.1346/CCMN.1995.0430403.CrossRefGoogle Scholar
Avotins, P.A., 1979 The rheology and handling of laterite slurries International Lateritic Symposium 610635.Google Scholar
Avramidis, K.S. and Turian, R.M., 1991 Yield stress of lateritic suspensions Journal of Colloid and Interface Science 143 5468 10.1016/0021-9797(91)90436-C.CrossRefGoogle Scholar
Bates, R.C. and Morgan, J.J., 1985 Dissolution kinetic of crysotile at pH 7 to 10 Geochimica et Cosmochimica Acta 49 22812288 10.1016/0016-7037(85)90228-5.Google Scholar
Buscall, R. Mcgoman, I.J. Mills, P.D.A. Stewart, R.F. Sutton, D. White, L.R. and Yates, G.E., 1987 The rheology of strongly flocculated suspensions Journal of Non-Newtonian Fluid Mechanics 24 183202 10.1016/0377-0257(87)85009-7.CrossRefGoogle Scholar
Cerpa, A. García-González, M.T. Tartaj, P. Requena, J. Garcell, L. and Serna, C.J., 1996 Rheological properties of concentrated lateritic suspensions Progress in Colloids and Polymer Science 100 266270 10.1007/BFb0115791.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses .Google Scholar
Dixon, J.B., Dixon, J.B. and Weed, S.B., 1977 Kaolinite and serpentine group minerals Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 357398.Google Scholar
Golden, D.C. and Dixon, J.B., 1985 Silicate and phosphate influence on kaolinite oxide interactions Soil Science Society of America Journal 49 15681576 10.2136/sssaj1985.03615995004900060047x.CrossRefGoogle Scholar
Hiemenz, P.C., 1977 Principles of Colloidal and Surface Chemistry New York Marcel Dekker.Google Scholar
Hunter, R.J., 1987 Foundations of Colloidal Science New York Oxford.Google Scholar
Leong, Y.K. Scales, P.J. Healy, T.W. and Boger, D.V., 1995 Effect of particle size on colloidal zirconia rheology at the isoelectric point Journal of the American Ceramic Society 78 22092212 10.1111/j.1151-2916.1995.tb08638.x.CrossRefGoogle Scholar
Luce, R.W. Bartlett, R.W. and Parks, G.A., 1964 Dissolution kinetic of magnesium silicates Geochimica et Cosmochimica Acta 36 3550 10.1016/0016-7037(72)90119-6.CrossRefGoogle Scholar
Ma, K. and Pierre, A.C., 1997 Effect of interactions between clay particles and Fe3+ ions on colloidal properties of kaolinite suspensions Clays and Clay Minerals 45 733744 10.1346/CCMN.1997.0450512.CrossRefGoogle Scholar
McLaughlin, W.J. White, J.L. and Hem, S.L., 1994 Effect of heterocoagulation on the rheology of suspensions containing alumnum hydroxycarbonate and magnesium hydroxide Journal of Colloid and Interface Science 167 7479 10.1006/jcis.1994.1334.CrossRefGoogle Scholar
Padmanabhan, E. and Mermut, A.R., 1995 The problem of expressing the specific surface areas of clay fractions Clays and Clay Minerals 43 237245 10.1346/CCMN.1995.0430211.CrossRefGoogle Scholar
Parks, G.A., 1965 The isoelectric point of solid oxides, solid hydroxides and aqueous hydroxo complex systems Chemical Reviews 65 177198 10.1021/cr60234a002.CrossRefGoogle Scholar
Ramakrishnan, V. Pradip, and Malghan, S.G., 1996 Yield stress of alumina-zirconia suspensions Journal of the American Ceramic Society 79 25672576 10.1111/j.1151-2916.1996.tb09017.x.CrossRefGoogle Scholar
Scheidgger, A. Borkovec, M. and Sticher, H., 1993 Coating of silica sand with goethite: Preparation and analytical identification Geoderma 58 4365 10.1016/0016-7061(93)90084-X.CrossRefGoogle Scholar
Schramm, G., 1994 A Practical Approach to Rheology and Rheometry .Google Scholar
Schultz, L.G., 1964 Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre shale U.S. Geological Survey Professional Papers, 391-C Washington, D.C. United States Government Printing Office.Google Scholar
Schwertmann, U. Taylor, R.M., Dixon, J.S. and Weed, S.B., 1977 Iron oxides Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 145176.Google Scholar
Thomas, D.G., 1961 Laminar flow properties of flocculated suspensions AICHE Journal 7 431437 10.1002/aic.690070317.Google Scholar
Valdés, G.E., 1984 Fundamentos químicos y coloidales de la sedimentación de las pulpas acuosas del mineral laterítico Revista Tecnológica, Mimbas 4450.Google Scholar
Velamakanni, B.V. and Lange, F.F., 1991 Effect of interparticle potentials and sedimentation on particle packing density of bimodal particle distribution during pressure filtration Journal of the American Ceramic Society 74 166172 10.1111/j.1151-2916.1991.tb07313.x.CrossRefGoogle Scholar
Vera, A., 1979 Introducción a los yacimientos de níquel cubanos 1315.Google Scholar
Yong, R.N. and Ohtsubo, M., 1987 Interparticle interaction and rheology of kaolinite-amorphous iron hydroxide (fer-rihydrite) complexes Applied Clay Science 2 6381 10.1016/0169-1317(87)90014-7.CrossRefGoogle Scholar