Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T05:18:35.778Z Has data issue: false hasContentIssue false

Low-Frequency Electrical Conductivity of Aqueous Kaolinite Suspensions II: Counterion Effects and Estimating Stern Layer Mobilities of Counterions

Published online by Cambridge University Press:  01 January 2024

Christian Weber*
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072 Aachen, Germany
Matthias Halisch
Affiliation:
Leibniz Institute for Applied Geophysics, Dept. 5 Petrophysics and Borehole Geophysics, Stilleweg 2, 30655 Hannover, Germany
Helge Stanjek
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, 52072 Aachen, Germany
*
Current address: Institute for Physical Chemistry, Technical University Bergakademie Freiberg, 09599 Freiberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The electrical state of the interface between a kaolinite-dominated clay sample and aqueous electrolyte solutions was characterized using low-frequency conductance measurements. From these measurements, the ζ-potential and surface conductivity contributions from the diffuse and non-diffuse parts of the electrical double layer were obtained. The suspensions were studied as a function of volume fraction, electrolyte concentration, and electrolyte type (LiCl, NaCl, KCl, CsCl, CaCl2, SrCl2, and BaCl2). Interpretation in terms of the surface conductance revealed that a substantial part of the surface conductivity originates in the inner part of the double layer. Electrokinetic potentials and related diffuse double layer properties are highly dependent on the nature of monovalent counterions, whereas divalent counterions do not show such clear dependencies. Further presented was a simple way to estimate the order of magnitude of counterion mobilities in the inner part of the electrical double layer. All counterions were shown to have a substantial mobility in the inner part of the double layer. Finally, we suggest that the apparent ion-specific effects observed in the diffuse part of the double layer are at least in part related to the finite size of the counterions. Our findings are relevant to scenarios where fluid flow in porous media is accompanied by charged species transport, e.g., in electro-osmotic remediation, spectral-induced polarization, or permeability measurements.

Type
Article
Copyright
Copyright © Clay Minerals Society 2018

References

Aranda-Rasćon, M.J. Grosse, C. López-García, J.J. and Horno, J., 2009a Electrokinetics of suspended charged particles taking into account the excluded volume effect Journal of Colloid and Interface Science 335 250256.CrossRefGoogle ScholarPubMed
Aranda-Rasćon, M.J. Grosse, C. López-García, J.J. and Horno, J., 2009 Influence of the finite ion size on the predictions of the standard electrokinetic model: Frequency response Journal of Colloid and Interface Science 366 857864.CrossRefGoogle Scholar
Biesheveul, P.M. and van Soestbergen, M., 2007 Counterion volume effects in mixed electrical double layers Journal of Colloid and Interface Science 316 490499.CrossRefGoogle Scholar
Bikerman, J.J., 1942 XXXIX. Structure and capacity of electrical double layer The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33 384397.CrossRefGoogle Scholar
Breeuwsma, A ^J, 1971 Interfacial electrochemistry of hematite (α-Fe2O3) Discussions of the Faraday Society 52 324333.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Chassagne, C. Mietta, F. and Winterwerp, J.C., 2009 Electrokinetic study of kaolinite suspensions Journal of Colloid and Interface Science 336 352359.CrossRefGoogle ScholarPubMed
Delgado, A.V. Gonzalez-Caballero, F. Hunter, R.J. Koopal, L.K. and Lyklema, J., 2007 Measurement and interpretation of electrokinetic phenomena Journal of Colloid and Interface Science 209 194224.CrossRefGoogle Scholar
Djerdjev, A.M. Beattie, J.K. and Hunter, R.J., 2003 An electroacoustic and high-frequency dielectric response study of stagnant layer conduction in emulsion systems Journal of Colloid and Interface Science 265 5664.CrossRefGoogle ScholarPubMed
Dove, M. and Craven, C.M., 2005 Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions Geochimica et Cosmochimica Acta 69 49634970.CrossRefGoogle Scholar
Dzenitis, J.M., 1997 Soil chemistry effects and flow prediction in electroremediation of soil Environmental Science & Technology 31 11911197.CrossRefGoogle Scholar
Jennings, B.R. and Parslow, K., 1988 Particle size measurement: The equivalent spherical diameter Proceedings of the Royal Society of London A: Physical, Mathematical and Engineering Sciences 419 137149.Google Scholar
Jiménez, M.L. Arroyo, F.J. Carrique, U. Kaatze, F. and Delgado, A.V., 2005 Determination of stagnant layer conductivity in polystyrene suspensions: Temperature effects Journal of Colloid and Interface Science 281 503509.CrossRefGoogle ScholarPubMed
Kruschwitz, S. Binley, A. Lesmes, D. and Elshenawy, A., 2010 Textural controls on low frequency electrical spectra of porous media Geophysics 75 113123.CrossRefGoogle Scholar
Kruschwitz, S. Carsten Prinz, C. and Zimathies, A., 2016 Study into the correlation of dominant pore throat size and SIP relaxation frequency Journal of Applied Geophysics 135 375386.CrossRefGoogle Scholar
Kruyt, H.R. and Klompé, M.A.M., 1943 Solkonzentration und Flockung beim AgJ-sol Kolloid-Beihefte 54 484553.CrossRefGoogle Scholar
Labbez, C. Fievet, P. Szymczyk, A. Simon, C. Vidonne, A. Foissy, A. and Pagetti, J., 2001 Hydraulic resistance measurements combined with electrical or diffusional resistance measurements for determination of pore size in MF membranes Desalination 141 291299.CrossRefGoogle Scholar
Löbbus, M. van Leeuwen, H. and Lyklema, J., 2000 Streaming potentials and conductivities of latex plugs: Influence of the valency of the counterion Colloids and Surfaces A: Physicochemical and Engineering Aspects 161 103113.CrossRefGoogle Scholar
Lopez-García, J.J. and Horno, J., 2011 Poisson-Boltzmann description of electrical double layer including ion size effects Langmuir 27 1397013974.CrossRefGoogle ScholarPubMed
Lyklema, J., 1995 Electrokinetics and related phenomena. Chapter 4 pp. 4.1–4.135 in: Fundamentals of Interface and Colloid Science (J. Lyklema, editor) Volume II, Elsevier.CrossRefGoogle Scholar
Lyklema, J., 2001 Surface conduction Journal of Physics: Condensed Matter 13 50275034.Google Scholar
Lyklema, J., 2002 Specificity in the statics and dynamics of surface-confined ions Molecular Physics 100 31773185.CrossRefGoogle Scholar
Lyklema, J., 2003 Lyotropic sequences in colloid stability revisited Advances in Colloid and Interface Science 100-102 112.CrossRefGoogle Scholar
Lyklema, J. and Minor, M., 1998 On surface conduction and its role in electrokinetics Colloids and Surfaces A: Physicochemical and Engineering Aspects 140 3341.CrossRefGoogle Scholar
Marcus, Y., 1988 Ionic radii in aqueous solutions Chemical Reviews 88 14751498.CrossRefGoogle Scholar
Minor, M. van Leeuwen, H.P. and Lyklema, J., 1998 Low-frequency dielectric response of polystyrene latex dispersions Journal of Colloid and Interface Science 206 397406.CrossRefGoogle ScholarPubMed
Minor, M. van der Linde, A.J. and Lyklema, J., 1998 Streaming potentials and conductivities of latex plugs in indifferent electrolytes Journal of Colloid and Interface Science 203 177188.CrossRefGoogle Scholar
O’Brien, R.W. and Rowlands, W.N., 1993 Measuring the surface conductance of kaolinite particles Journal of Colloid and Interface Science 159 471476.CrossRefGoogle Scholar
O’Brien, R.W. and Ward, D.N., 1988 The electrophoresis of a spheroid with a thin double layer Journal of Colloid and Interface Science, 121 402413.CrossRefGoogle Scholar
Rasmussen, M. Rowlands, W.N. O’Brien, R.W. and Hunter, R.J., 1997 The dynamic mobility and dielectric response of sodium bentonite Journal of Colloid and Interface Science 189 92100.CrossRefGoogle Scholar
Revil, A., 2012 Spectral induced polarization of shaly sands: Influence of the electrical double layer Water Resources Research 48 123.CrossRefGoogle Scholar
Revil, A., 2014 Discussion Comment on: “On the relationship between induced polarization and surface conductivity: Implications for petrophysical interpretation of electrical measurements” Geophysics 79 X1X10.CrossRefGoogle Scholar
Revil, A. and Florsch, N., 2010 Determination of permeability from spectral induced polarization in granular media Geophysical Journal International 181 14801498.Google Scholar
Rouquerol, J. Avnir, D. Fairbridge, D.H. Everett, C. Haynes, J.H. Pernicone, N. Ramsay, J.D.F. Sing, K.S.W. and Unger, K.K., 1994 Recommendations for the characterization of porous solids Pure and Applied Chemistry 66 17391758.CrossRefGoogle Scholar
Rowlands, W.N. and O’Brien, R.W., 1995 The dynamic mobility and dielectric response of kaolinite particles Journal of Colloid and Interface Science 175 190200.CrossRefGoogle Scholar
Scott, J.B.T. and Barker, R.D., 2005 Characterization of sandstone by electrical spectroscopy for stratigraphical and hydrogeological investigations Quarterly Journal of Engineering and Geology and Hydrogeology 38 143154.CrossRefGoogle Scholar
Slepetys, R.A. and Cleland, A.J., 1993 Determination of shape of kaolin pigment particles Clay Minerals 28 495508.CrossRefGoogle Scholar
Tarasov, A. and Titov, K., 2007 Relaxation time distribution from time domain induced polarization measurements Geophysical Journal International 170 3143.CrossRefGoogle Scholar
Verbich, S.V. Dukhin, S.S. and Matsumura, H., 1999 Investigation of dynamic stern layer of liposomes by measurements of conductivity and electrophoresis Journal of Dispersion Science and Technology 20 83104.CrossRefGoogle Scholar
Weber, C. and Stanjek, H., 2017 Low-frequency electric conductivity of aqueous kaolinite suspensions: Surface conductance, electrokinetic potentials and counterion mobility Clay Minerals 52 299313.CrossRefGoogle Scholar
Weber, C. Heuser, M. Mertens, G. and Stanjek, H., 2014 Determination of clay mineral aspect ratios from conductometric titrations Clay Minerals 49 1726.CrossRefGoogle Scholar
Weller, A. and Slater, L., 2015 Induced polarization dependence on pore space geometry: Empirical observations and mechanistic predictions Journal of Applied Geophysics 123 310315.CrossRefGoogle Scholar
Weller, A. Slater, L. and Nordsiek, S., 2013 On the relationship between induced polarization and surface conductivity: Implications for petrophysical interpretation of electrical measurements Geophysics 78 D315D325.CrossRefGoogle Scholar
Weller, A. Zhang, Z. and Slater, L., 2015 High-salinity polarization of sandstones Geophysics 80 D309D318.CrossRefGoogle Scholar
Weller, A. Zhang, Z. Slater, L. Kruschwitz, S. and Halisch, M., 2016 Induced polarization and pore radius — A discussion Geophysics 81 D519D526.CrossRefGoogle Scholar