Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T07:50:55.411Z Has data issue: false hasContentIssue false

Losses of Radiogenic 40Ar in the Fine-Clay Size Fractions of Sediments

Published online by Cambridge University Press:  01 January 2024

Abraham Lerman*
Affiliation:
Department of Geological Sciences, Northwestern University, Evanston, Illinois 60208, USA
Norbert Clauer
Affiliation:
Centre de Géochimie de la Surface (CNRS/ULP), 1, rue Blessig, 67084 Strasbourg, France
*
*E-mail address of corresponding author: alerman@northwestern.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The common observation that smaller particle-size fractions of sedimentary rocks yield younger K-Ar apparent ages than the larger particle-size fractions of the same stratigraphic age was analyzed with the aid of the 40Ar/40K ratio from 14 stratigraphically and regionally different sections. Estimation of the loss of radiogenic 40Ar from varied clay-rich size fractions was based on two models: a relationship between particle size and the 40Ar/40K ratio, and a theoretical diffusional loss from spherical particles. The differences between the two models and reconciliation of their results are discussed. For the smallest fractions (up to <0.5 μm), percent-wise losses of 40Ar from the spherical particles model increase from Upper Carboniferous and Permian (38±10%), to Late Triassic (47±10%), and to Miocene and Late Neogene (65±8%). This trend suggests that escape of 40Ar from the smaller particles in older sediments decreased or even stopped after deposition of the sedimentary sections.

The large 40Ar losses derived from small 40Ar/40K ratios in the younger Tertiary sediments, indicate that addition of K to the small fractions is, at least in part, responsible for the young K-Ar apparent ages in geologically different settings. In several 102–103 m thick sections, authigenic illite in the <0.1 to <2 μm fractions yields young K-Ar apparent ages resulting from simultaneous 40Ar production and release during clay authigenesis. In a production and loss model, a first-order escape-rate parameter (e) was estimated at 0.2 × 10−8 to 4 × 10−8 y−1, depending on the K-Ar apparent age of the size fractions and the stratigraphic age of the section. The limitations and uncertainties of the methods of evaluating diagenetic 40Ar losses from fine clay particles are discussed.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Aronson, J.L. and Hower, J., (1976) Mechanism of burial metamorphism of argillaceous sediments: 2. Radiogenic argon evidence Geological Society of America Bulletin 87 738744 10.1130/0016-7606(1976)87<738:MOBMOA>2.0.CO;2.Google Scholar
Aronson, J.L. and Lee, M.C., (1986) K/Ar systematics of bentonite and shale in contact metamorphic zone, Cerrilos, New Mexico Clays and Clay Minerals 34 483487 10.1346/CCMN.1986.0340415.Google Scholar
Carslaw, H.S. and Jaeger, J.C., (1959) Conduction of Heat in Solids 2nd Oxford Oxford University Press.Google Scholar
Clauer, N. and Chaudhuri, S., (1995) Clays in Crustal Environments — Isotope Dating and Tracing. New York Springer-Verlag 10.1007/978-3-642-79085-0.Google Scholar
Clauer, N. O’Neil, J.R. and Furlan, S., (1995) Clay minerals as records of temperature conditions and duration of thermal anomalies in the Paris Basin, France Clay Minerals 30 113 10.1180/claymin.1995.030.1.01.Google Scholar
Clauer, N. O’Neil, J.R. and Bonnot-Courtois, C., (1982) The effect of natural weathering on the chemical and isotopic compositions of biotites Geochimica et Cosmochimica Acta 46 17551762 10.1016/0016-7037(82)90115-6.Google Scholar
Clauer, N. Rinckenbach, T. Weber, F. Sommer, F. Chaudhuri, S. and O’Neil, J.R., (1999) Diagenetic evolution of clay minerals in oil-bearing Neogene sandstones and associated shales, Mahakam Delta Basin, Kalimantan, Indonesia American Association of Petroleum Geologists Bulletin 83 6287.Google Scholar
Clauer, N. Zwingmann, H. and Gorokhov, I.M., (2003) Postdepositional evolution of platform claystones based on a simulation of thermally induced diffusion of radiogenic 40Ar from diagenetic illite Jounal of. Sedimentary Research 73 5863 10.1306/061002730058.Google Scholar
Clauer, N. Rousset, D. and Srodon, J., (2004) Modeled shale and sandstone burial diagenesis based on the K-Ar systematics of illite-type fundamental particles Clays and Clay Minerals 52 576588 10.1346/CCMN.2004.0520504.Google Scholar
Crank, J., (1967) Mathematics of Diffusion 2nd UK Oxford University Press, Oxford.Google Scholar
Dalrymple, G.B. and Lanphere, M.A., (1969) Potassium-Argon Dating. San Francisco Freeman.Google Scholar
Dodson, M.H., (1973) Closure temperature in cooling geochronological and petrological systems Contributions to Mineralogy and Petrology 40 259274 10.1007/BF00373790.Google Scholar
Dong, H. Hall, C.M. Peacor, D.R. and Halliday, A.N., (1995) Mechanisms of argon retention in clays revealed by laser 40Ar–39Ar dating Science 267 355359 10.1126/science.267.5196.355.Google Scholar
Dong, H. Hall, C.M. Halliday, A.N. and Peacor, D.R., (1997) 40Ar–39Ar dating of Late-Caledonian (Acadian) meta-morphism and cooling of K-bentonites and slates from the Welsh Basin, U.K Earth and Planetary Science Letters 150 337351 10.1016/S0012-821X(97)00100-3.Google Scholar
Dong, H. Hall, C.M. Peacor, D.R. Halliday, A.N. and Pevear, D.R., (2000) Thermal 40Ar/39Ar separation of diagenetic from detrital illitic clays in Gulf Coast shales Earth and Planetary Science Letters 175 309325 10.1016/S0012-821X(99)00294-0.Google Scholar
Eberl, D.D., (1993) Three zones for illite formation during burial diagenesis and metamorphism Clays and Clay Minerals 41 2637 10.1346/CCMN.1993.0410103.Google Scholar
Faure, G., (1986) Principles of Isotope Geology 2nd New York Wiley.Google Scholar
Folger, H.W. Snee, L.W. Mehnert, H.H. Hofstra, A.H., Coyner, A R and Fahey, P L, (1995) Significance of K-Ar and 40Ar/39Ar dates from mica in Carlin-type gold deposits: Evidence from the Jerritt Canyon District, Nevada Geology and Ore Deposits of the Merica Cordillera USA Geological Society of Nevada Symposium Proceedings, Reno/Sparks, Nevada 4160.Google Scholar
Folger, H.W. Hofstra, A.H. Eberl, D.D. and Snee, L.W., (1998) Importance of clay characterization to interpretation of 40Ar/39Ar dates of illite from Carlin-type gold deposits: insights from Jerritt Canyon, Nevada: U.S. Geological Survey Open File Report, 98–338 193201.Google Scholar
Freer, R., (1981) Diffusion in silicate minerals and glasses: a data digest and guide to literature Contributions to Mineralogy and Petrology 76 440454 10.1007/BF00371486.Google Scholar
Furlan, S., (1994) Transferts de matière au cours de la diagenèse d’enfouissement dans le bassin du delta de la Mahakam (Indonésie). Un nouveau concept pour le mécanisme de l’utilsation France Thèse de Doctorat, Université Louis Pasteur, Institut de Géologie, Strasbourg.Google Scholar
Furlan, S. Clauer, N. Chaudhuri, S. and Sommer, F., (1996) K transfer during burial diagenesis in the Mahakam Delta Basin (Kalimantan, Indonesia) Clays and Clay Minerals 44 157169 10.1346/CCMN.1996.0440201.Google Scholar
Glasmann, J.R. Larter, S. Briedis, N.A. and Lundegard, P.D., (1989) Shale diagenesis in the Bergen High Area, North Sea Clays and Clay Minerals 37 97112 10.1346/CCMN.1989.0370201.Google Scholar
Hall, C.M. Higueras, P. Kesler, S.E. Lunar, R. Dong, H. and Halliday, A.N., (1997) Dating of alteration episodes related to mercury mineralization in the Almadén district, Spain Earth and Planetary Science Letters 148 287298 10.1016/S0012-821X(97)00041-1.Google Scholar
Hamilton, P.J. Kelley, S. and Fallick, A.E., (1989) K-Ar dating of illite in hydrocarbon reservoirs Clay Minerals 24 213215 10.1180/claymin.1989.024.2.08.Google Scholar
Harland, W.B. Armstrong, R.L. Cox, A.V. Craig, L.E. Smith, A.G. and Smith, D.G., (1990) A Geologic Time Scale 1989. UK Cambridge University Press, Cambridge.Google Scholar
Hower, J. Eslinger, E.V. Hower, M.E. Perry, E.A. Jr., (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.Google Scholar
Huon, S. Cornée, J.J. Piqué, A. Rais, N. Clauer, N. Liewig, N. and Zayane, R., (1993) Mise en évidence au Maroc d’événements thermiques d’âge triasico-liasique liés à l’ouverture de l’Atlantique Bulletin de la Société géologique de France 164 165176.Google Scholar
Langley, K.M., (1978) Dating sediments by the K-Ar method Nature 276 5657 10.1038/276056a0.Google Scholar
Lerman, A., (1979) Geochemical Processes — Water and Sediment Environments. New York Wiley.Google Scholar
Liewig, N. and Clauer, N., (2000) K-Ar dating of varied microtextural illite in Permian gas reservoirs, northern Germany Clay Minerals 35 275285 10.1180/000985500546648.Google Scholar
Liewig, N. Clauer, N. and Sommer, F., (1987) Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone reservoirs American Association of Petroleum Geologists Bulletin 71 14671474.Google Scholar
Lovera, O.M., (1992) Computer programs to model 40Ar/39Ar diffusion data from multidomain samples Computers & Geoscience 18 789813 10.1016/0098-3004(92)90025-M.Google Scholar
McDougall, I. and Harrison, T.M., (1999) Geochronology and Thermochronology by the 40Ar/39Ar Method 2nd New York Oxford University Press.Google Scholar
Mitchell, J.G. and Taka, A.S., (1984) Potassium and argon loss patterns in weathered micas: implications for detrital mineral studies with particular reference to the Triassic paleogeography of the British Isles Sedimentary Geology 39 2752 10.1016/0037-0738(84)90023-X.Google Scholar
Mossmann, J.R. Clauer, N. and Liewig, N., (1992) Dating thermal anomalies in sedimentary basins: the diagenetic history of clay minerals in the Triassic sandstones of the Paris Basin (France) Clay Minerals 27 211226 10.1180/claymin.1992.027.2.06.Google Scholar
Perry, E.A. Jr., (1974) Diagenesis and the K-Ar dating of shales and clay minerals Geological Society of America Bulletin 85 827830 10.1130/0016-7606(1974)85<827:DATKDO>2.0.CO;2.Google Scholar
Priyomarsono, S., (1985) Contribution à l’étude géologique du Sud-Est de Bornéo (Indonésie). France Université de Savoie, Département des Sciences de la Terre.Google Scholar
Reuter, A., (1987) Implications of K-Ar ages of whole-rock and grain-size fractions of metapelites and intercalated meta-tuffs within an anchizonal terrane Contributions to Mineralogy and Petrology 91 105115 10.1007/BF00375218.Google Scholar
Schaltegger, U. Zwingmann, H. Clauer, N. Larqué, P. and Stille, P., (1995) K-Ar dating of a Mesozoic hydrothermal activity in Carboniferous to Triassic clay minerals of northern Switzerland Schweizerische Mineralogische und Petrographische Mitteilungen 75 163176.Google Scholar
Shackleton, N.J. Hall, M.A. Raffi, I. Tauxe, L. and Zachos, J., (2000) Astronomical calibration age for the Oligocene-Miocene Boundary Geology 28 447450 10.1130/0091-7613(2000)28<447:ACAFTO>2.0.CO;2.Google Scholar
Steiger, R.H. and Jäger, E., (1977) Subcommission on Geochronology: Convention on the use of decay constants in geo- and cosmochronology Earth and Planetary Science Letters 36 359362 10.1016/0012-821X(77)90060-7.Google Scholar
Turner, G. and Ahrens, L.H., (1968) The distribution of potassium and argon in chondrites Origin and Distribution of the Elements UK Pergamon Press, Oxford 387398 10.1016/B978-0-08-012835-1.50039-8.Google Scholar
Weaver, C.E. Broekstra, B.R. and Weaver, C.E., (1984) Illite-mica Shale-Slate Metamorphism in Southern Appalachians Amsterdam Elsevier 99139 10.1016/B978-0-444-42264-4.50010-4.Google Scholar
Wijbrans, J.R. and McDougall, I., (1986) 40Ar/39Ar dating of white micas from an Alpine high-pressure metamorphic belt of Naxos (Greece): the resetting of the argon isotopic system Contributions to Mineralogy and Petrology 93 187194 10.1007/BF00371320.Google Scholar
Wilson, G.S. Lavelle, M. Mcintosh, W.C. Roberts, A.P. Harwood, D.M. Watkins, D.K. Villa, G. Bohaty, S.M. Fielding, C.R. Florindo, F. Sagnotti, L. Naish, T.R. and Scherer, R.P., (2002) Integrated chronostratigraphic calibration of the Oligocene-Miiocene boundary at 24.0±0.1 Ma from the CRP-2A drill core, Ross Sea, Antarctica Geology 30 10431046 10.1130/0091-7613(2002)030<1043:ICCOTO>2.0.CO;2.Google Scholar
Zwingmann, H., (1995) Study of the conditions of gas emplacement in sandstone reservoirs (Rotliegende of Germany). Mineralogical, morphological, geochemical and isotopical aspects France Doctoral Thesis, Université Louis Pasteur, Institut de Géologie, Strasbourg.Google Scholar
Zwingmann, H. Clauer, N. and Gaupp, R., (1999) Structurerelated geochemical (REE) and isotopic (K-Ar, Rb-Sr, δ18O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany) Geochimica et Cosmochimica Acta 63 28052823 10.1016/S0016-7037(99)00198-2.Google Scholar