Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T18:57:45.676Z Has data issue: false hasContentIssue false

Lithium and Potassium Absorption, Dehydroxylation Temperature, and Structural Water Content of Aluminous Smectites

Published online by Cambridge University Press:  01 July 2024

Leonard G. Schultz*
Affiliation:
U.S. Geological Survey, Federal Center, Denver, Colo. 80225
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray analysis of Li+- and K+-saturated samples, differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and chemical analysis of 83 samples enable a distinction to be made between Wyoming, Tatatilla, Otay, Chambers, and non-ideal types of montmorillonite, and between ideal and non-ideal types of beidellite. The Greene-Kelly Li+-test differentiates between the montmorillonites and beidellites. Re-expansion with ethylene glycol after K+-saturation and heating at 300°C depends upon total net layer charge and not upon location of the charge. Wyoming-type montmorillonites characteristically have low net layer charge and re-expand to 17 Å, whereas most other montmorillonites and beidellites have a higher net layer charge and re-expand to less than 17 Å.

Major differences in dehydroxylation temperatures cannot be related consistently to the amount of Al3+-for-Si1+ substitution, nor to the amount of Mg, Fe, type of interlayer cations, or particle size. The major factor controlling temperature of dehydroxylation seems to be the amount of structural (OH). Of 19 samples analyzed by TGA, montmorillonites and the one ideal beidellite that give dehydroxylation endotherms on their DTA curves between 650° and 760°C all contain nearly the ideal amount of 4(OH) per unit cell, but the non-ideal montmorillonites and beidellites that give dehydroxylation peaks between 550° and 600°C do not. Non-ideal beidellites contain more than the ideal amount of structural (OH) and non-ideal montmorillonites seem to contain less, although the low temperature of dehydroxylation of the latter could also be due to other structural defects. Change in X-ray diffraction intensity of the 001 reflection during dehydroxylation suggests that the extra (OH) of beidellite occurs at the apex of SiO4 or AlO4 tetrahedrons with the H+ of the (OH) polarized toward vacant cation sites in the octahedral sheet.

Résumé

Résumé

Une analyse radiographique d’échantillons saturés de Li+ et de K+, analyse différentielle thermique (DTA), analyse gravimetrique thermique (TGA), et analyse chemique de 83 échantillons permettent de faire une distinction entre Wyoming. Tatatilla, Otay, Chambers, et les types de montmorillonites non idéaux, et entre les types de beidellites idéaux et non idéaux. Le test Greene-Kelly Li+ différencie les montmorillonites des beidellites. La redilation par éthylène glycol après saturation de K+ et chauffage à 300°C, dépend de la charge de couche totale nette et non pas de l’emplacement de la charge. Les montmorillonites du type Wyoming sont caractérisées par une charge de couche nette relativement basse, elles ont pour propriété de se redilater à 17 A, alors que la plupart des autres montmorillonites et beidellites possèdent une charge de couche nette plus élevée et se redilatent à moins de 17 A.

Les écarts importants de température de déshydroxylation ne peuvent constamment se rapporter à la quantité de Al3+ pour la substitution de Si4+, ni à la quantité des cations de couche intermédiaire du type Mg, Fe ou à la grosseur des particules. Le plus important facteur de contrôle de la température de déshydroxylation semble être la quantité de (OH) structurel. Des 19 échantillons analysés d’après le procédé d’analyse gravimétrique thermique (TGA), les montmorillonites et le beidellite idéal qui donnent des endothermes de déshydroxylation sur les courbes de l’analyse différentielle thermique (DTA) entre 650° et 760°C, contiennent tous à peu près la quantité idéale de 4(OH) par cellule unitaire. Les beidellites non idéaux contiennent plus que la quantité idéale de (OH) structurel et les montmorillonites non idéaux semblent en contenir moins, bien que la basse température de déshydroxylation de ces derniers puisse être causée par d’autres défauts de structure. Le changement d’intensité de la diffraction des rayons X de la réflexion 001 au cours de la déshydroxylation suggère que le supplément de (OH) des beidellites se produit au sommet des tétraèdres de SiO4 ou AlO4 avec le H+ du (OH) polarisé vers les zones libres de cations de la feuille octaèdre.

Kurzreferat

Kurzreferat

Die Röntgenanalyse Li+- und K+-gesättigter Proben, die differentielle Thermoanalyse (DTA), die gravimetrische Thermoanalyse (GTA) und die chemische Analyse von 83 Proben ermöglicht es eine Unterscheidung zu treffen zwischen Wyoming. Tatatilla, Otay, Chambers und nichtidealen Typen von Montmorillonit, sowie zwischen idealen und nichtidealen Typen von Beidellit. Die Greene-Kelly Li+-Prüfung unterscheidet zwischen Montmorilloniten und Beidelliten, Wiedererweiterung durch Äthylenglykol nach K+ Sättigung und Erwärmung auf 300° hängt von der Gesamtschichtladung und nicht vom Ort der Ladung ab. Die Wyoming-Typ Montmorillonite haben charakteristisch niedrige Schichtladungen und erweitern sich erneut auf 17 Å, während die meisten anderen Montmorillonite und Beidellite eine höhere Schichtladung aufweisen und sich auf weniger als 17 Å erweitern.

Grössere Unterschiede in der Dehydroxylierungstemperatur können auf konsequente Weise weder zu dem Ausmass des Al3+ gegen Si4+ Austausches, noch zu der Menge von Mg, Fe, dem Typ der Zwischenlagenkationen oder der Teilchengrösse in eine Beziehung gebracht werden. Der hauptsächlichste, die Temperatur der Dehydroxylierung beeinflussende Faktor scheint die Menge des (OH) im Gefüge zu sein. Von den 19 durch TGA untersuchten Proben von Montmorilloniten und dem einen Beidellit, die auf ihren DTA Kurven Dehydroxylierungsendotherme zwischen 650° und 760°C ergeben, enthalten alle beinahe die ideale Menge von 4 (OH) pro Einheitszelle, die nichtidealen Montmorillonite und Beidellite, die Dehydroxylierungsspitzen zwischen 550° und 600°C ergeben, jedoch nicht. Nichtideale Beidellite enthalten mehr als die ideale Menge von (OH) im Gefüge, wahrend die nichtidealen Montmorillonite weniger zu enthalten scheinen, obwohl die niedrige Dehydroxylierungstemperatur der letzteren auch auf andere Gefügefehler zurückzuführen sein könnte. Die Veränderung in der Röntgenbeugungsintensität der 001 Reflexion während der Dehydroxylierung deutet darauf hin, dass die zusätzlichen (OH) des Beidellits am Scheitel der SiO4 oder AlO4 Tetraeder Vorkommen, wobei die H+ der (OH) gegen leere Kationenstellen in der oktaedrischen Platte hin polarisiert sind.

Резюме

Резюме

Рентгеновское изучение образцов, насыщенных Ы и Лi+ дифференциальный термический анализ (ДТА), термогравиметрический анализ (ТГА) и данные химических анализов 83 образцов позволяют установитразличие между монтмориллонитами из Вайоминга, Тататилла, Отэй и Чеймберса, монтмориллонитами неидеального типа и бейделлитами идеального и неидеального типов.

Насыщение Li+, предложенное Грин-Келли, позволяет отличать монтмориллониты от бейделлитов. Набухание, которое вызывает этилен-гликоль после насыщения K+ и нагревания до 300°С, зависит от полной величины заряда слоя, но не от его положения: монтмориллониты вайомингского типа отличаются низкой величиной заряда слоя и при набухании их d(001) возрастает до 17 А;у большинства других монтмориллонитов и бейделлитов заряд слоя больше, при набухании их d(001) не достигает 17 А. Основные различия в температурах дегидроксилизаиии не обнаруживают строгой зависимости как от количества Аl3+, замещающего Si4+, так и от количества Мg, Fе, типа межслоевых катионов, величины частиц. Главным фактором, контролирующим температуру дегидроксилизаиии, по-видимому, является количество структурных (ОН). Из 19 изученных с помощью ТГА образцов все монтмориллониты и один идеальный бейделлит, давшие на кривых ДТА эндотермические прогибы дегидроксилизаиии между 650 и 760°С, содержат почти идеальное количество гидроксилов—4 (ОН) на элементарную ячейку. В этом отношении они отличаются от неидеальных монтмориллонитов и бейделлитов, которые дают прогиб дегидроксилизаиии между 550° и 600°С: неидеальные бейделлиты содержат больше, а неидеальные монтмориллониты меьнше структурных (ОН), чем идеальные; причиной низкой температуры дегидроксилизаиии неидеальных монтмориллонитов могут быть их другие структурные дефекты. Изменение интенсивности рефлекса (001) на рентгенограммах во время дегидроксилизаиии служит указанием на возможность того, что дополнительный (ОН) бейделлита находится на вершине тетраэдров ЗЮт или АЮт, причем Н+ в группе (ОН) ориентирован по направлению к вакантным позициям катионов в октаэдрическом слое.

Type
Research Article
Copyright
Copyright © 1969, The Clay Minerals Society

Footnotes

*

Publication authorized by the Director, U.S. Geological Survey.

References

Ames, L. L. Jr. and Sand, L. V. (1958) Factors effecting maximum hydrothermal stability in montmorillonites: Am. Mineralogist 43, 641–48.Google Scholar
Anderson, D. M. and Reynolds, R. C. (1966) Umiat bentonite-An unusual montmorillonite from Umiat, Alaska: Am. Mineralogist 51, 1443–56.Google Scholar
Barshad, I. (1954) Cation exchange in micaceous minerals—[Pt.] II, Replaceability of ammonium and potassium from vermiculite, biotite, and montmorillonite: Soil Sci. 78, 5776.CrossRefGoogle Scholar
Bayliss, P. (1965) Differential thermal analysis; Effect of particle size: Nature, Lond. 207. 284.Google Scholar
Brackett, R. N. and Williams, J. F. (1891) Newtonite and rectorite — two new minerals of the Kaolinite Group: Am. J. Sci. 42, 1121.CrossRefGoogle Scholar
Bradley, W. F. (1950) The alternating layer sequence of rectorite: Am. Mineralogist 35, 590–95.Google Scholar
Bradley, W. F. and Grim, R. E. (1951) High temperature thermal effects of clay and related minerals: Am. Mineralogist 36, 182201.Google Scholar
Bragg, W. L. (1937) Atomic Structure of Minerals: Cornell Univ. Press, New York 292 pp.Google Scholar
Brown, G. (Editor) (1961) The X-ray Identification and Crystal Structures of Clay Minerals, 2nd End: Mineralogical Soc. (Clay Minerals Group), London, 544 pp.Google Scholar
Brown, G. and Weir, A. H. (1963) The identity of rectorite and allevardite: Proc. Intern. Clay Conf, Stockholm, Pergamon Press, New York, 2735.Google Scholar
Cicel, B. (1963) On the problem of bond strength of OH group in layer silicates: Geol. Práce, Zpràvy 30. 249–68.Google Scholar
Earley, J. W., Milne, I. H. and McVeagh, W. J. (1953) Thermal dehydration and X-ray studies on montmorillonite: Am. Mineralogist 38, 770–83.Google Scholar
Farley, J. W., Osthaus, V. V. and Milne, I. H. (1953) Purification and properties of montmorillonite: Am. Mineralogist 38, 707–24.Google Scholar
Edelman, C. H. and Favejee, J. Ch. L. (1940) On the crystal structure of montmorillonite and halloysite: Z. Krist. 102, 417–31.Google Scholar
Farmer, V. C. and Russell, J. D. (1964) The i.r. spectra of layer silicates: Spectrochim. Acta 20. 1149–73.Google Scholar
Ferguson, H. G. (1921) The limestone ores of Manhatten, Nevada: Econ. Geol. 16, 136.CrossRefGoogle Scholar
Fournier, R. O. (1965) Montmorillonite pseudomorphic after plagioclase in a prophyry copper deposit: Am. Mineralogist 50, 771–77.Google Scholar
Greene-Kelly, R. (1955) Dehydration of the montmorillonite minerals: Mineral. Mag. 30, 604–15.Google Scholar
Grim, R. E., Bray, R. H. and Bradley, W. F. (1937) The mica in argillaceous sediments: Am. Mineralogist 22, 813–29.Google Scholar
Grim, R. E. and Kulbicki, G. (1961) Montmorillonite - High temperature reactions and classification: Am. Mineralogist 46, 1329–69.Google Scholar
Grim, R. E. and Rowland, R. A. (1942) Differential thermal analysis of clay minerals and other hydrous materials, Pts. 1 and 2: Am. Mineralogist 27, 746–61, 801-18.Google Scholar
Harward, M. E. and Brindley, G. W. (1965) Swelling properties of synthetic smectites in relation to lattice substitutions: Clays and Clay Minerals 13. 209–22. [Pergamon Press, New York].Google Scholar
Heide, F. (1928) Beiträge zur Mineralogie und Petrographic der Rhön: Chem. Erde 3. 91–7.Google Scholar
Heystek, H. (1963) Hydrothermal rhyolitic alteration in the Castle Mountains, California: Clays and Clay Minerals 11, 158–68. [Pergamon Press. New York].Google Scholar
Higashi, T. and Aomine, S. (1962) Weathering of montmorillonite in soils: Soil Sci. Plant Nutr. 8, 712.CrossRefGoogle Scholar
Hofmann, U., Endell, K. and Wilm, D. (1933) Kristallstruktur und Quellung von Montmorillonit: Z. Krist. 86, 340–8.Google Scholar
Jackson, M. L. (1958) Soil chemical analysis: Prentice- Hall, Englewood Cliffs, N.J. , 498 pp.Google Scholar
Johns, W. D. and Jonas, E. S. (1954) Some observations on the relation between isomorphism and properties of clays: J. Geol. 62, 163–71.CrossRefGoogle Scholar
Jonas, E. C. (1961) Mineralogy of the micaceous clay minerals: 21st Intern. Geol. Congr. Copenhagen 1960, Rept. pt. 2, 716.Google Scholar
Kelley, W. P. (1955) Interpretation of chemical analyses of clays: Clavs and Clay Tech. 1, 92–4. [Calif. Div. Mines Bull. 169].Google Scholar
Kerns, R. L. Jr. and Mankin, C. J. (1968) Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals: Clays and Clav Minerals 16, 7381.CrossRefGoogle Scholar
Kerr, P. F. (1932) Montmorillonite or smectite as constituents of fuller's earth and bentonite: Am. Mineralogist 17, 192–8.Google Scholar
Kerr, P. F., Hamilton, P. K. and Pill, R. J. (1950) Analytical data on reference clay minerals: Am. Petrol. Inst. Project 49, Clay Mineral Standards, Prelim. Rept. 7, 160 pp.Google Scholar
Kerr, P. F., Kulp, J. L. and Hamilton, P. K. (1949) Differential thermal analyses of reference clay mineral specimens: Am. Petrol. Inst. Project 49, Clay Mineral Standards, Prelim. Rept. 3, 48 pp.Google Scholar
Kodama, H. (1966) The nature of the component layers of rectorite: Am. Mineralogist 51, 1035–55.Google Scholar
Koizumi, M. and Roy, R. (1959) Synthetic montmorillonoids with variable exchange capacity: Am. Mineralogist 44, 788805.Google Scholar
Mackenzie, R. C. (Editor) (1957) The differential thermal investigation of clays: Mineralogical Soc. (Clay Minerals Group), London , 456 pp.Google Scholar
Mackenzie, R. C. (1960) Evaluation of clay-mineral composition with particular reference to smectites: Silicates Ind. 25, 1218, 71–5.Google Scholar
Mackenzie, R. C. (1963) Retention of exchangeable ions by montmorillonite: Proc. Intern. Clay Conf, Stockholm. Pergamon Press, New York, 183–93.Google Scholar
Mackenzie, R. C. and Bishui, V. M. (1958) The montmorillonite differential thermal curve —II, Effect of exchangeable cations on the dehydroxylation of normal montmorillonite: Clay Minerals Bull. 3, 276–86.CrossRefGoogle Scholar
McConnell, D. (1951) The crystal chemistry of montmorillonite—II. Calculation of the structural formula: Clay Minerals Bull. 1, 179–88.Google Scholar
Melhase, J. (1926) Mining bentonite in California: Eng. Mining J. 121, 837–42.Google Scholar
Mielenz, R. S., Schieitz, N. S. and King, M. E. (1954) Thermogravimetric analysis of clay and clay-like minerals; Clays and Clay Minerals 2, 285314. [Nat. Acad. Sci.-Nat. Res. Council Publ. 327].Google Scholar
Mielenz, R. S., Schieitz, N. C. and King, M. E. (1955) Effect of exchangeable cation on X-ray diffraction patterns and thermal behavior of a montmorillonite clay: Clays and Clay Minerals 3, 146–73, [Nat. Acad. Sci.-Nat Res. Council Publ. 395].Google Scholar
Mumpton, F. A. and Roy, R. (1956) The influence of ionic substitution on the hydrothermal stability of montmorillonoids: Clays and Clay Minerals 4, 337–9. [Nat. Acad. Sci.-Nat. Res. Council Publ. 456].Google Scholar
Nagelschmidt, G. (1938) On the atomic arrangement and variability of the members of the montmorillonite group: Mineral. Mag. 25, 140–55.Google Scholar
Ross, C. S. and Hendricks, S. B. (1945) Minerals of the montmorillonite group, their origin and relation to soils and clays: U.S. Geol. Surv. Prof. Paper 205-B, 23-79 [1946].Google Scholar
Ross, C. S. and Shannon, E. V. (1926) The minerals of bentonite and related clays and their physical properties: J. Am. Ceram. Soc. 9, 7796.CrossRefGoogle Scholar
Ross, C. S. and Stephenson, L. W. (1939) Calcareous shells replaced by beidellite: Am. Mineralogist 24, 393–7.Google Scholar
Schultz, L. G. (1963) Clay minerals in Triassic rocks of the Colorado Plateau: U.S. Geol. Surv. Bull. 1147-C, CI-C71.Google Scholar
Schultz, L. G. (1966) Lithium and potassium absorption, differential thermal, and infrared properties of some montmorillonites (abs.): Clays and Clay Minerals 13, 275. [Pergamon Press, New York].Google Scholar
Sudo, T. and Ota, S. (1952) An iron-rich variety of montmorillonite found in “Oya-ishi”: J. Geol. Soc. Japan 58, 487–91.CrossRefGoogle Scholar
Wear, J. I. and White, J. L. (1951) Potassium fixation in clay minerals as related to crystal structure: Soil Sci. 71, 114.CrossRefGoogle Scholar
Weaver, C. E. (1958) The effects and geologic significance of potassium “fixation” by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic material: Am. Mineralogist. 43, 839–61.Google Scholar
Weir, A. H. (1965) Potassium retention in montmorillonites: Clay Minerals 6, 1722. [Pergamon Press, New York], .Google Scholar
Weir, A. H. and Greene-Kelly, R. (1962) Beidellite: Am. Mineralogist 47, 137–46.Google Scholar
Weiss, A., Koch, G. and Hofmann, U., (1955) Zur Kenntnis von Saponite: Ber. Deut. Keram. Ges. 32, 1217.Google Scholar