Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T03:09:04.170Z Has data issue: false hasContentIssue false

Iron-Oxide Mineralogy of a Mollisol from Argentina: A Study By Selective-Dissolution Techniques, X-Ray Diffraction, and Mössbauer Spectroscopy

Published online by Cambridge University Press:  28 February 2024

Silvia G. Acebal*
Affiliation:
Departamento de Química e Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, 8000 - Bahía Blanca, Argentina
Ana Mijovilovich
Affiliation:
Departamento de Física, Comisión Nacional de Energía Atómica, Avda. Libertador 8250, 1429 - Buenos Aires, Argentina
Elsa H. Rueda
Affiliation:
Departamento de Química e Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, 8000 - Bahía Blanca, Argentina
María E. Aguirre
Affiliation:
Departamento de Agronomía, Universidad Nacional del Sur, Altos del Palihue, 8000 - Bahía Blanca, Argentina
Celia Saragovi
Affiliation:
Departamento de Física, Comisión Nacional de Energía Atómica, Avda. Libertador 8250, 1429 - Buenos Aires, Argentina
*
E-mail of corresponding author: sacebal@criba.edu.ar
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Selective-dissolution techniques by ammonium oxalate (OX), dithionite-citrate-bicarbonate (DCB), and dithionite-ethylenediaminetetraacetic acid (D-EDTA), and X-ray diffraction and Mössbauer spectroscopy were used to identify and characterize iron oxides and oxyhydroxides in the <2-mm, <50-μm, and <2-μm size fractions of a Mollisol from Bahia Bianca, Argentina. Iron compounds are present at low concentrations in mixtures with quartz, Na-rich feldspar, illite, interstratified illite-montmorillonite, and traces of kaolinite. Total Fe and Al content increases as soil particle size decreases, from 4.3 and 13.3 wt. % in the <2-mm size fraction to 8.5 and 22.8 wt. % in the clay fraction (<2 μm), respectively. No more than 25–30% of the total Fe is associated with the crystalline and the amorphous Fe oxides. Weakly ferromagnetic hematite and goethite were identified in the different fractions. These phases have small particle sizes and/or low crystallinity. They may also have Al for Fe substitutions. Crystalline magnetite or maghemite is rare. These Fe-rich phases are probably coating coarser particles.

The efficiency of Fe removal is highest for the D-EDTA treatment and least efficient for the OX method, for all fractions. The opposite is true for Al removal. Poorly crystalline hematite and goethite, which are soluble in oxalate, are only present in the coarser fractions. Poorly crystalline and crystalline hematite and goethite, which are soluble in DCB and EDTA, are present in coarser fractions, but do not occur in the clay fraction. DCB treatment probably dissolves Al in the 2:1 type phyllosilicates occurring in this soil, whereas D-EDTA dissolves Fe in the hydroxy interlayers of the smectite minerals or in the silicate phases.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Acebal, S.G., 1989 Comportamiento de algunas sustancias complejantes comò agentes de extraction de elementos me-nores en suelos Bahia Bianca, Argentina Universidad Nacional del Sur.Google Scholar
Aguirre, M.E., 1987 Rol de los minérales amorfos en el proceso de cementación a la agrégation Bahia Bianca, Argentina Universidad Nacional del Sur.Google Scholar
Allan, J.E.M. Coey, J.M.D. Resende, M. and Fabris, J.D., 1988 Magnetic properties of iron-rich oxisols Physical Chemistry Mineralogy 15 470475 10.1007/BF00311127.CrossRefGoogle Scholar
Bigham, J.M. Golden, D.C. Bowen, L.H. Buoi, S.W. and Weed, S.B., 1978 Iron oxide mineralogy of well-drained Ultisols and Oxisols: I. Characterization of iron oxides in soil clays by Mössbauer spectroscopy, X-ray diffractome-try, and selected chemical techniques Soil Science Society of America Journal 42 816825 10.2136/sssaj1978.03615995004200050033x.CrossRefGoogle Scholar
Blanco, M.C. and Sanchez, L.F., 1995 Caracterización de las fracciones limo y arcilla en suelos loésicos del suroeste pampeano en Argentina Turrialba 45 7684.Google Scholar
Bowen, L.H., 1979 Mössbauer spectroscopy of ferrie oxide and hydroxides Mössbauer Effect Reference Data Journal 2 7694.Google Scholar
Bowen, L.H. Weed, S.B. and Herber, R.H., 1984 Mössbauer spectroscopy of soils and sediments Chemical Mössbauer Spectroscopy New York Plenum Publishing Corp. 217242 10.1007/978-1-4613-2431-7_9.CrossRefGoogle Scholar
Bower, C. A. Reitemeier, R.F. and Fireman, M., 1952 Exchangeable cation analysis of saline and alkali soils Soil Science 73 251253 10.1097/00010694-195204000-00001.CrossRefGoogle Scholar
Campbell, A.S. and Schwertmann, U., 1984 Iron oxide mineralogy of placic horizons Journal of Soil Science 53 569582 10.1111/j.1365-2389.1984.tb00614.x.CrossRefGoogle Scholar
Campbell, A.S. and Schwertmann, U., 1985 Evaluation of selective dissolution extradants in soil chemistry and mineralogy by differential X-ray diffraction Clay Minerals 20 515519 10.1180/claymin.1985.020.4.07.CrossRefGoogle Scholar
Carter, D.L. Heilman, M.D. and Gonzalez, C.L., 1965 Ethylene glycol monoethyl ether for determining surface area of silicate minerals Soil Science 100 356360 10.1097/00010694-196511000-00011.CrossRefGoogle Scholar
Coey, J.M.D., 1980 Clay minerals and their transformations studied by nuclear techniques Atomic Energy Review 18 73124.Google Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides Weinheim VCH Publishers.Google Scholar
Ericsson, T. and Wäppling, R., 1976 Texture effects in 3/2-1/2 Mössbauer spectra Journal de Physique 6 719723.Google Scholar
Gangas, N.H. Simopoulos, A. Kostikas, A. Yassoglou, N.J. and Filippakis, S., 1973 Mössbauer studies of small particles of iron oxides in soils Clays and Clay Minerals 21 151160 10.1346/CCMN.1973.0210303.CrossRefGoogle Scholar
Goulart, A.T., 1994 Propiedades estructurais e magnéticas de óxidos de ferro présentes em solos magnéticos oriundos de basalto e tufitos Brazil Universidade Federal de Minas Gerais, Belo Horizonte.Google Scholar
Housley, R.M. Erickson, N.E. and Nash, J.D., 1964 Measurement of recoil-free fractions in studies of the Mössbauer efect Nuclear Instrument Methods 27 2937 10.1016/0029-554X(64)90132-6.CrossRefGoogle Scholar
Jackson, M.L., 1964 Andlisis Qulmico de Suelos Barcelona Ediciones Omega 368440.Google Scholar
Jackson, M.L., 1979 Soil Chemical Analysis—Advanced Course 2.Google Scholar
Jeanroy, E. Guillet, B. Delcroix, P. and Janot, C.h., 1983 Les formes du fer dans les sols: Confrontation des méthodes chimiques avec la spectrométrie Mössbauer Science du Sol 4 185194.Google Scholar
Kinniburg, D.G. Jackson, M.L., Anderson, M.A. and Rubin, A.J., 1981 Cation adsorption by hydrous metal oxides and clay Adsorption of Inorganics at Solid—Liquid Interfaces Ann Arbor, Michigan Ann Arbor Science Publishers 91160.Google Scholar
Kodama, H. McKeague, J.A. Tremblay, R.J. Gosselin, J.R. and Townsend, M.G., 1977 Characterization of iron oxide compounds in soils by Mössbauer and other methods Canadian Journal of Earth Science 14 115 10.1139/e77-001.CrossRefGoogle Scholar
Long, G.J. Cranshaw, T.E. and Longworth, G., 1983 The ideal Mössbauer effect absorber thicknesses Mössbauer Effect Data Reference Journal 6 4249.Google Scholar
Mehra, O.R. and Jackson, M.L., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Mijovilovich, A., 1997 Estudio Mössbauer de óxidos e hid-róxidos de Fe: Aplicación al estudio de suelos .Google Scholar
Mijovilovich, A. Morrás, H. Saragovi, C. Santana, G. and Fabris, J.D., 1998 Magnetic fraction from an Ultisol from Misiones, Argentina Hyperfine Interactions C 3 332335.Google Scholar
Muir, A.H. and Gruverman, I.J., 1968 Analysis of complex Mössbauer spectra by stripping techniques Mössbauer Effect Methodology, Volume 4 New York Plenum Press 75101 10.1007/978-1-4757-1550-7_5.CrossRefGoogle Scholar
Murad, E., 1979 Mössbauer and X-ray data on β-FeOOH (akaganeite) Clay Minerals 14 273283 10.1180/claymin.1979.014.4.04.CrossRefGoogle Scholar
Murad, E. and Schwertmann, U., 1980 The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxides American Mineralogist 65 10441049.Google Scholar
Murad, E. and Schwertmann, U., 1986 Influence of Al substitution and crystal size on the room-temperature Mössbauer spectrum of hematite Clays and Clay Minerals 34 16 10.1346/CCMN.1986.0340101.CrossRefGoogle Scholar
Murad, E. and Wagner, U., 1994 The Mössbauer spectrum of illite Clay Minerals 29 110 10.1180/claymin.1994.029.1.01.CrossRefGoogle Scholar
Parfitt, R.L. and Childs, C.W., 1988 Estimation of forms of Fe and Al: A review, and analysis of contrasting soils by dissolution and Mössbauer methods Australian Journal of Soil Research 26 121144 10.1071/SR9880121.CrossRefGoogle Scholar
Robinson, G.W., 1922 A new method for the mechanical analysis of soils and other dispersions Journal of Agricultural Science 12 306321 10.1017/S0021859600005360.CrossRefGoogle Scholar
Rozenson, I. and Heller-Kallai, L., 1976 Reduction and oxidation of Fe3+ in dioctahedral smectites I: Reduction with hydrazine and dithionite Clays and Clay Minerals 24 271282 10.1346/CCMN.1976.0240601.CrossRefGoogle Scholar
Rueda, E.H. Ballesteros, M.C. Grassi, R.L. and Blesa, M.A., 1992 Dithionite as a dissolving reagent for goethite in the presence of EDTA and citrate. Application to soil analysis Clays and Clay Minerals 40 575585 10.1346/CCMN.1992.0400512.CrossRefGoogle Scholar
Ryan, J.N. and Gschwend, P.M., 1991 Extraction of iron oxides from sediments using reductive dissolution by titanium (III) Clays and Clay Minerals 39 509518 10.1346/CCMN.1991.0390506.CrossRefGoogle Scholar
Saragovi, C. and Mijovilovich, A., 1997 A warning on the use of Mössbauer spectroscopy in semiquantitative analysis of soils Clays and Clay Minerals 45 480482 10.1346/CCMN.1997.0450317.CrossRefGoogle Scholar
Saragovi, C. Labenski, F. Duhalde, S.M. Acebal, S.G. and Venegas, R., 1994 Mössbauer studies on some Argentinian soil: Mollisols from Bahfa Bianca Hyperfine Interactions 91 765769 10.1007/BF02064604.CrossRefGoogle Scholar
Schulze, D.G., 1981 Identification of soil iron oxides minerals by differential X-ray diffraction Soil Science Society of America Journal 45 437440 10.2136/sssaj1981.03615995004500020040x.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Am-moniumoxalat-Lösung Zeitschritt Pflanzenemährung Düngung und Bodenkunde 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U., 1973 Use of oxalate for Fe extraction from soils Canadian Journal of Soil Science .CrossRefGoogle Scholar
Vandenberghe, R.E., 1992 DIST3E-program, based on the Wivel-Morup method Gent, Belgium Laboratory of Magnetism, University of Gent.Google Scholar
Vandenberghe, R.E. De Grave, E. De Geyter, G. and Lan-duydt, C., 1986 Characterization of goethite and hematite in a Tunisian soil profile by Mössbauer spectroscopy Clays and Clay Minerals 34 275280 10.1346/CCMN.1986.0340307.CrossRefGoogle Scholar
Vandenberghe, R.E. De Grave, E. Bowen, L.H. and Lan-duydt, C., 1990 Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays Hyperfine Interactions 53 175196 10.1007/BF02101046.CrossRefGoogle Scholar
Walkley, A., 1946 A critical examination of a rapid method for determining organic carbon in soils. Effect of variations in digestion conditions and of inorganic soil constituents Soil Science 63 251263 10.1097/00010694-194704000-00001.CrossRefGoogle Scholar