Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T12:11:34.699Z Has data issue: false hasContentIssue false

Interaction of Corroding Iron with Bentonite in the ABM1 Experiment at Äspö, Sweden: A Microscopic Approach

Published online by Cambridge University Press:  01 January 2024

Paul Wersin*
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Andreas Jenni
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Urs K. Mäder
Affiliation:
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
*
*E-mail address of corresponding author: paul.wersin@geo.unibe.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bentonite and iron metals are common materials proposed for use in deep-seated geological repositories for radioactive waste. The inevitable corrosion of iron leads to interaction processes with the clay which may affect the sealing properties of the bentonite backfill. The objective of the present study was to improve our understanding of this process by studying the interface between iron and compacted bentonite in a geological repository-type setting. Samples of MX-80 bentonite samples which had been exposed to an iron source and elevated temperatures (up to 115°C) for 2.5 y in an in situ experiment (termed ABM1) at the Äspö Hard Rock Laboratory, Sweden, were investigated by microscopic means, including scanning electron microscopy, μ-Raman spectroscopy, spatially resolved X-ray diffraction, and X-ray fluorescence.

The corrosion process led to the formation of a ~100 μm thick corrosion layer containing siderite, magnetite, some goethite, and lepidocrocite mixed with the montmorillonitic clay. Most of the corroded Fe occurred within a 10 mm-thick clay layer adjacent to the corrosion layer. An average corrosion depth of the steel of 22–35 μm and an average Fe2+ diffusivity of 1–2 × 10−13 m2/s were estimated based on the properties of the Fe-enriched clay layer. In that layer, the corrosion-derived Fe occurred predominantly in the clay matrix. The nature of this Fe could not be identified. No indications of clay transformation or newly formed clay phases were found. A slight enrichment of Mg close to the Fe—clay contact was observed. The formation of anhydrite and gypsum, and the dissolution of some SiO2 resulting from the temperature gradient in the in situ test, were also identified.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2015

References

Bradbury, M., Berner, U., Curti, E., Hummel, W., Kosakowski, G., and Thoenen, T. (2014) The long term geochemical evolution of the nearfield of the HLW repository. NAGRA Technical Report NTB 12-01, Wettingen, Switzerland. .Google Scholar
Carlson, L. Karnland, O. Oversby, V.M. Rance, A.P. Smart, N.R. Snellman, M. Vähänen, M. and Werme, L.O., 2007 Experimental studies of the interactions between anaerobically corroding iron and bentonite Physics and Chemistry of the Earth 32 334345.CrossRefGoogle Scholar
Carrado, K.A. and Komadel, P., 2009 Acid activation of bentonites and polymer—clay nanocomposites Elements 5 111116.CrossRefGoogle Scholar
Charpentier, D. Devineau, K. Mosser Ruck, R. Cathelineau, M. and Villieras, F., 2006 Bentonite—iron interactions under alkaline condition: An experimental approach Applied Clay Science 32 113.CrossRefGoogle Scholar
Christidis, G.E. and Huff, W.D., 2009 Geological aspects and genesis of bentonites Elements 5 9398.CrossRefGoogle Scholar
De Combarieu, G. Schlegel, M.L. Neff, D. Foy, E. Vantelon, D. Barboux, P. and Gin, S., 2011 Glass-iron-clay interactions in a radioactive waste geological disposal: An integrated laboratory-scale experiment Applied Geochemistry 26 6579.CrossRefGoogle Scholar
Didier, M. Leone, L. Greneche, J.-M. Giffaut, E. and Charlet, L., 2012 Adsorption of hydrogen gas and redox processes in clays Environmental Science and Technology 46 35743579.CrossRefGoogle ScholarPubMed
Dohrmann, R. Olsson, S. Kaufhold, S. and Sellin, P., 2013 Mineralogical investigations of the first package of the alternative buffer material test. II. Exchangeable cation population rearrangement Clay Minerals 48 215233.CrossRefGoogle Scholar
Eisenhour, D.D. and Brown, R.K., 2009 Bentonite and its impact on modern life Elements 5 8388.CrossRefGoogle Scholar
Eng, A., Nilsson, U., and Svensson, D. (2007) Äspö Hard Rock Laboratory. Alternative Buffer Material. Installation report. SKB International Progress Report IPR-07-15, Stockholm, Sweden. .Google Scholar
Fernández, A.M. and Villar, M.V., 2010 Geochemical behaviour of a bentonite barrier in the laboratory after up to 8 years of heating and hydration Applied Geochemistry 25 809824.CrossRefGoogle Scholar
Foct, F. and Gras, J.-M. (2003) Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal. Pp. 92102 in: Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems (Ferron, D. and McDonald, D.D., editors). European Federation of Corrosion. ISBN 1902653874.Google Scholar
Gates, W.P. Bouazza, A. and Churchman, G.J., 2009 Bentonite clay keeps pollutants at bay Elements 5 105110.CrossRefGoogle Scholar
Gaudin, A. Gaboreau, S. Tinseau, E. Bartier, D. Petit, S. Grauby, O. Foct, F. and Beaufort, D., 2009 Mineralogical reactions in the Tournemire argillite after in situ interaction with steels Applied Clay Science 43 196207.CrossRefGoogle Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Pfeiffert, C. Abdeloula, M. Dubessy, J. Villéras, F. Baronnet, A. and Michau, N., 2003 Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic Fe Clay Minerals 38 281302.CrossRefGoogle Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villiéras, F. and Michau, N., 2004 Experimental study of the transformation of smectite at 80 and 300°C in the presence of Fe oxides Clay Minerals 39 1734.CrossRefGoogle Scholar
Güven, N., 2009 Bentonites — clays for molecular engineering Elements 5 8992.CrossRefGoogle Scholar
Jodin-Caumon, M.-C. Mosser-Ruck, R. Rousset, D. Randi, A. Cathelineau, M. and Michau, N., 2010 Effect of a thermal gradient on iron-clay interactions Clays and Clay Minerals 58 667681.CrossRefGoogle Scholar
Jodin-Caumon, M.-C. Mosser-Ruck, R. Randi, A. Pierron, O. Cathelineau, M. and Michau, N., 2012 Mineralogical evolution of a claystone after reaction with iron under thermal gradient Clays and Clay Minerals 60 443455.CrossRefGoogle Scholar
Johnson, L., Marschall, P., Wersin, P., and Gribi, P. (2008) HMCBG processes related to the steel components in the KBS-3H disposal concept. SKB Report R-08-25, SKB, Stockholm, Sweden. 127 pp. .Google Scholar
Karnland, O., Olsson, S., and Nilsson, U. (2006) Mineralogy and sealing properties of various bentonites and smectiterich clay materials. SKB Technical Report TR-06-30, Stockholm, Sweden. .Google Scholar
Karnland, O. Nilsson, U. Weber, H. and Wersin, P., 2008 Sealing ability of Wyoming bentonite pellets foreseen as buffer material — laboratory tests Physics and Chemistry of the Earth 33 S472S475.CrossRefGoogle Scholar
Karnland, O., Olsson, S., Dueck, A., Birgersson, M., Nilsson, U., and Hernan-Hakansson, T. (2009) Long term test of buffer material at the Äspö Hard Rock Laboratory, LOT project. Final report on the A2 test parcel. SKB Technical Report TR-09-29, Stockholm, Sweden. .Google Scholar
Kaufhold, S. Dohrmann, R. Sanden, T. Sellin, P. and Svensson, D., 2013 Mineralogical investigations of the first package of the alternative buffer material test. I. Alteration of bentonites Clay Minerals 48 199213.CrossRefGoogle Scholar
King, F. (2008) Corrosion of carbon steel under anaerobic conditions in a repository for SF and HLW in Opalinus Clay. NAGRA Technical Report NTB 08-12, Wettingen, Switzerland. .Google Scholar
Kumpulainen, S., Carlsson, T., Muurinen, A., Kiviranta, L., Svensson, D., Sasamoto, H., Yui, M., Wersin, P., and Rosch, D. (2010) Long-term alteration of bentonite in the presence of metallic iron. Posiva Working Report 2010-71, Olkiluoto, Finland and SKB Report R-10-52, Stockholm, Sweden. .Google Scholar
Lanson, B. Lantenois, S. Van Aken, P.A. Bauer, A. and Plançon, A., 2012 Experimental investigation of smectite interaction with metal iron at 80°C: Structural characterization of newly formed Fe-rich phyllosilicates American Mineralogist 97 864871.CrossRefGoogle Scholar
Lantenois, S. Lanson, B. Mulller, F. Bauer, A. Jullien, M. and Plançon, A., 2005 Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization Clays and Clay Minerals 53 597612.CrossRefGoogle Scholar
Martin, F.A. Bataillon, C. and Schlegel, M.B., 2008 Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment Journal of Nuclear Materials 379 8090.CrossRefGoogle Scholar
Marty, N.C.M. Fritz, B. Clément, A. and Michau, N., 2010 Modelling the long term alteration of the bentonite barrier in an underground radioactive waste repository Applied Clay Science 47 8290.CrossRefGoogle Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388.CrossRefGoogle Scholar
Molera, M. and Eriksen, T.E., 1998 Cation diffusion in compacted bentonite Mineralogical Magazine 62A 10071008.CrossRefGoogle Scholar
Mosser-Ruck, R. Cathelineau, M. Guillaume, D. Charpentier, D. Rousset, D. Barres, O. and Michau, N., 2010 Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite Clays and Clay Minerals 58 280291.CrossRefGoogle Scholar
NAGRA (2002) Project Opalinus Clay: Safety report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis). NAGRA Technical Report NTB 02-05, Wettingen, Switzerland. .Google Scholar
NAGRA (2009) Performance of bentonite as buffer and sealing material: Status of R and D programme. NAGRA Arbeitsbericht NAB 09-12, Wettingen, Switzerland. .Google Scholar
NAGRA (2011) Alternative Buffer Material — Status report. NAGRA Arbeitsbericht NAB 11-19, NAGRA, Wettingen, Switzerland. .Google Scholar
Osackýa, M. Šucha, V. Czímerová, A. and Madejová, J., 2010 Reaction of smectites with iron in a nitrogen atmosphere at 75°C Applied Clay Science 50 237244.CrossRefGoogle Scholar
Papillon, F., Jullien, M., and Bataillon, C. (2001) Carbon steel behaviour in compacted clay: two long-term tests for corrosion prediction. Pp. 439454 in: Prediction of Long Term Corrosion, Behaviour in Nuclear Waste Systems. (Feron, D. and MacDonald, D.D., editors). European Federation of Corrosion Publications.Google Scholar
Perronnet, M. Jullien, M. Villieras, F. Raynal, J. Bonnin, D. and Bruno, G., 2008 Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80°C Applied Clay Science 38 187202.CrossRefGoogle Scholar
POSIVA (2013) Safety case for the disposal of spent nuclear fuel at Olkiluoto. Report Posiva 2012–14, Olkiluoto, Finland. .Google Scholar
Schlegel, M.L. Bataillon, C. Blanc, C. Prêt, D. and Foy, E., 2010 Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: characterization of the corrosion interface Environmental Science & Technology 44 15031508.CrossRefGoogle ScholarPubMed
Schlegel, M.L. Bataillon, C. Brucker, F. Blanc, C. Pêt, D. Foy, E. and Chorro, M., 2014 Corrosion of metal iron in contact with anoxic clay at 90°C: Characterization of the corrosion products after two years of interaction Applied Geochemistry 51 114.CrossRefGoogle Scholar
SKB (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark. SKB Technical Report TR-11-01, Stockholm, Sweden. .Google Scholar
Svensson, D., Dueck, A., Nilsson, U., Olsson, S., Sandén, T., Lydmark, S., Jägerwall, S., Pedersen, K., and Hansen, S. (2011) Alternative buffer material. Status of the ongoing laboratory investigation of reference materials and test package 1. SKB Technical Report TR-11-06, Stockholm, Sweden. .Google Scholar
Svensson, D. and Hansen, S., 2013 Iron redox chemistry in two iron-bentonite field experiments at Äspö Hard Rock Laboratory, Sweden — studied by Fe K XANES and XRD Clays and Clay Minerals 61 566579.CrossRefGoogle Scholar
Tournassat, C. (2003) Cations—clays interactions: the Fe(II) case. Application to the problem of the French deep nuclear repository field concept. PhD thesis, University of Grenoble, France, 199 pp.Google Scholar
Wersin, P. Birgersson, M., Norris, S. Bruno, J. Cathelineau, M. Delage, P. Fairhurst, C. Gaucher, E.C. Höhn, E.H. Kalinichev, A. Lalieux, P. and Sellin, P., 2014 Reactive transport modelling of iron-bentonite interaction within the KBS-3H disposal concept: the Olkiluoto site as a case study Clays in Natural and Engineered Barriers for Radioactive Waste Confinement London Geological Society.Google Scholar
Wersin, P., Spahiu, K., and Bruno, J. (1994) Time evolution of dissolved oxygen and redox conditions in a HLW repository. SKB Technical Report TR 94-02, Stockholm, Sweden. .Google Scholar
Wersin, P., Johnson, L., and Schwyn, B. (2004) Assessment of redox conditions in the near field of nuclear waste repositories: Application to the Swiss high-level and intermediate level waste disposal concept. MRS symposium proceedings, 807 (Oversby, V.M. and Werme, L.O., editors). Materia l s Research Society (MRS), Pittsburgh, Pennsylvania, pp. 539544. (Scientific basis for nuclear waste management XXVII: Symposium held 15–19 June, 2003, Kalmar, Sweden.).Google Scholar
Wersin, P., Birgersson, M., Olsson, S., Karnland, O., and Snellman, M. (2007) Impact of corrosion-derived iron on the bentonite buffer within the KBS-3H disposal concept — the Olkiluoto site as case study. Posiva Report 2007-11, Olkilouto, Finland. .Google Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187.CrossRefGoogle Scholar
Williams, L.B. Haydel, S.E. Ferrell, R.E. Jr, 2009 Bentonite, bandaids, and Borborygmi Elements 5 99104.CrossRefGoogle ScholarPubMed
Wilson, J. Cressey, G. Cressey, B. Cuadros, J. Ragnarsdottir, K.V. Savage, D. and Shibata, M., 2006 The effect of iron on montmorillonite stability: (II) Experimental investigation Geochimica et Cosmochimica Acta 70 323336.CrossRefGoogle Scholar
Wollenberg, R. and Schröder, H. (2006) Herstellung und Charakterisierung von Bentonitsystemen für den Einsatz als Versiegelungsmaterial (Fabrication and characterization of bentonite systems for the use as sealing material). NAGRA Arbeitsbericht NAB 06-20, Wettingen, Switzerland.Google Scholar
Xia, X. Idemitsu, K. Arima, T. Inagaki, Y. Ishidera, T. Kurosawa, S. Iijima, K. and Sato, H., 2005 Corrosion of carbon steel in compacted bentonite and its effect on neptunium diffusion under reducing condition Applied Clay Science 28 89100.CrossRefGoogle Scholar
Yu, J.-W. and Neretnieks, I. (1997) Diffusion and sorption properties of radionuclides in compacted bentonite. SKB Technical Report TR 97-12, Stockholm, Sweden. .Google Scholar