Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T18:53:53.430Z Has data issue: false hasContentIssue false

Influence of Synthesis pH on Kaolinite “Crystallinity” and Surface Properties

Published online by Cambridge University Press:  28 February 2024

Claire-Isabelle Fialips
Affiliation:
Laboratoire Hydr’ ASA, UMR6532-CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
Sabine Petit
Affiliation:
Laboratoire Hydr’ ASA, UMR6532-CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
Alain Decarreau
Affiliation:
Laboratoire Hydr’ ASA, UMR6532-CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
Daniel Beaufort
Affiliation:
Laboratoire Hydr’ ASA, UMR6532-CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, F-86022 Poitiers Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydrothermal syntheses were performed at various pH values and temperatures to induce variability in kaolinite defect density. Temperature of synthesis ranged from 200 to 240°C, for 21 d. Initial pH at room temperature ranged from 0.5 to 14. The starting material was a hydrothermally treated gel, with an atomic Si/Al ratio of 0.93, partly transformed into kaolinite.

Kaolinite was obtained for a wide range of pH. Although no influence of temperature on “crystallinity” (i.e., defect density) was observed, the effect of pH was important. A continuous series was obtained from a low-defect kaolinite, with high thermal stability and a hexagonal morphology for the most acidic final pH, to a high-defect kaolinite, with low thermal stability and lath shape for the most basic final pH. These variations of kaolinite properties appear related to the pH dependence of kaolinite surface speciation. Increasing pH value results in increased cation adsorption on the kaolinite external surfaces and increases in the elongation of particles.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Bailey, S.W., Brindley, G.W. and Brown, G., 1980 Structure of layer silicates Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 2839.Google Scholar
Barrer, R.M. and White, E.A.D., 1952 The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates Journal of the Chemical Society 15611571.CrossRefGoogle Scholar
Barrios, J. Plançon, A. Cruz, M.I. and Tchoubar, C., 1977 Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite—relationship with the infrared spectra Clays and Clay Minerals 25 422429 10.1346/CCMN.1977.0250608.CrossRefGoogle Scholar
Bish, D.L. and Johnston, C.T., 1993 Rietveld refinement and Fourier-transform infrared spectroscopic study of the dickite structure at low temperature Clays and Clay Minerals 41 297304 10.1346/CCMN.1993.0410304.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Brindley, G.W. and Porter, A.R.D., 1978 Occurrence of dickite in Jamaica-ordered and disordered varieties American Mineralogist 63 554562.Google Scholar
Brindley, G.W. Kao, C-C Harrison JL Lipsicas, M. and Raythatha, R., 1986 Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Calvert, C.S., 1981 Chemistry and mineralogy of iron-substituted kaolinite in natural and synthetic systems Texas, USA Texas A&M University.Google Scholar
Cases, J.M. Liétard, O. Yvon, J. and Delon, J.F., 1982 Etude des propriétés cristallochimiques, morphoiogiques et superficielles de kaolinites désordonnées Bulletin de Minéralogie 105 439457.CrossRefGoogle Scholar
Chatterjee, N.D., 1970 Synthesis and upper stability of paragonite Contributions to Mineralogy and Petrology 27 244257 10.1007/BF00385781.CrossRefGoogle Scholar
Cruz-Cumplido, M. Sow, C. and Fripiat, J.J., 1982 Spectre infrarouge des hydroxyles, cristallinité et énergie de cohésion des kaolins Bulletin de Minéralogie 105 493498.CrossRefGoogle Scholar
De Kimpe, C. Gastuche, M.C. and Brindley, G.W., 1964 Low-temperatures syntheses of kaolin minerals American Mineralogist 49 116.Google Scholar
Delineau, T. Allard, T. Muller, J.P. Barrès, O. Yvon, J. and Cases, J.M., 1994 FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays and Clay Minerals 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Devidal, J.L. Dandurand, J.L. Schott, J., Kharaka, Y.K. and Maest, A.S., 1992 Dissolution and precipitation kinetics of kaolinite as a function of chemical affinity (T = 150°C, pH = 2 and 7.8) Water-Rock Interaction Rotterdam Balkema 9394.Google Scholar
Eberl, D. and Hower, J., 1975 Kaolinite synthesis: The role of the Si/Al and (alkali)/(H+) ratio in hydrothermal systems Clays and Clay Minerals 23 301309 10.1346/CCMN.1975.0230406.CrossRefGoogle Scholar
Espiau, P. and Pedro, G., 1984 Comportement des ions aluminiques et de la silice en solution: Étude de la formation de la kaolinite Clay Minerals 19 615627 10.1180/claymin.1984.019.4.08.CrossRefGoogle Scholar
Farmer, V.C., 1964 Infrared absorption of hydroxyl groups in kaolinite Science 145 11891190 10.1126/science.145.3637.1189.CrossRefGoogle ScholarPubMed
Farmer, V.C. and Farmer, V.C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331365 10.1180/mono-4.15.CrossRefGoogle Scholar
Farmer, V.C. and Russell, J.D., 1964 The infrared spectra of layer silicates Spectrochimica Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Fiore, S. Huertas, F.J. Huertas, F. and Linares, J., 1995 Morphology of kaolinite crystals synthesized under hydrothermal conditions Clays and Clay Minerals 43 353360 10.1346/CCMN.1995.0430310.CrossRefGoogle Scholar
Frost, R.L. and Van Der Gaast, S.J., 1997 Kaolinite hydroxyls—a Raman microscopy study Clay Minerals 32 471484 10.1180/claymin.1997.032.3.09.CrossRefGoogle Scholar
Guinier, A. and Guinier, A., 1956 Diffraction par les cristaux de très petite taille Théorie et Technique de la Radiocristallographie Paris Dunod 462465.Google Scholar
Hinckley, D.N., 1963 Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Hlavay, J. Jonas, K. Elek, S. and Inczedy, J., 1977 Characterization of the particule size and the crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods—I. Investigations on clay minerals Clays and Clay Minerals 25 451456 10.1346/CCMN.1977.0250611.CrossRefGoogle Scholar
Huertas, F.J. Huertas, F. and Linares, J., 1993 Hydrothermal synthesis of kaolinite: Method and characterization of synthetic materials Applied Clay Science 7 345356 10.1016/0169-1317(93)90001-H.CrossRefGoogle Scholar
Jeanroy, E., 1974 Analyse totale par spectrométrie d’absorption atomique des roches, sols, minerals, ciments après fusion au métaborate de strontium Analysis 2 703712.Google Scholar
Johnston, C.T. Agnew, S.E. and Bish, D.L., 1990 Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite Clays and Clay Minerals 38 573583 10.1346/CCMN.1990.0380602.CrossRefGoogle Scholar
Kukovskii, E.G. Plastinina, M.A. and Fedorenko, Y.U.G., 1969 Nature of water in layered silicates. II. Infrared spectroscopy of OHn groups in 1:1 dioctahedral layers Konstituciâ i Svojstva Mineraloy 3 1725.Google Scholar
La Iglesia Fernandez, A. Martin Vivaldi, J.L., Serratosa, J.M. and Sánchez, A., 1973 A contribution to the synthesis of kaolinite Proceedings of the International Clay Conference, Madrid, 1972 Madrid Division de Ciensas 173184.Google Scholar
Ledoux, R.L. and White, J.L., 1964 Infrared study of selective deuteration of kaolinite and halloysite at room temperature Science 145 4749 10.1126/science.145.3627.47.CrossRefGoogle ScholarPubMed
Liétard, O., 1977 Contribution à l’étude des propriétés physicochimiques, cristallographiques et morphologiques des kaolins Nancy, France University of Nancy.Google Scholar
Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., 1980 Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content Clay Minerals 15 113 10.1180/claymin.1980.015.1.01.CrossRefGoogle Scholar
Mestdagh, M.M. Herbillon, A.J. Rodrigue, L. and Rouxhet, P.G., 1982 Evaluation du role du fer structural sur la cristallinité des kaolinites Bulletin de Minéralogie 105 457466.CrossRefGoogle Scholar
Miyawaki, R. Tomura, S. Samejima, S. Okazaki, M. Mizuta, H. Muruyama, S.I. and Shibasaki, Y., 1991 Effects of solution chemistry on the hydrothermal synthesis of kaolinite Clays and Clay Minerals 39 498508 10.1346/CCMN.1991.0390505.CrossRefGoogle Scholar
Nakamoto, K. and Nakamoto, K., 1963 Tetrahedral and square-planar five-atom molecules Infrared Spectra of Inorganic and Coordination Compounds New York John Wiley and Sons 103114.Google Scholar
Pampuch, R., 1966 Infrared study of thermal transformations of kaolinite and the structure of metakaolin Prace Mineralogiczne 6 5370.Google Scholar
Pelletier, M. Michot, L.J. Barrès, O. Humbert, B. Petit, S. and Robert, J.L., 1999 Influence of KBr conditioning on the IR hydroxyl stretching region of saponites Clay Minerals 34 439445 10.1180/000985599546343.CrossRefGoogle Scholar
Petit, S. and Decarreau, A., 1990 Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.CrossRefGoogle Scholar
Petit, S. Decarreau, A. Mosser, C. Ehret, G. and Grauby, O., 1995 Hydrothermal synthesis (250°C) of copper-substituted kaolinites Clays and Clay Minerals 43 482494 10.1346/CCMN.1995.0430413.CrossRefGoogle Scholar
Petit, S. Righi, D. Madejova, J. and Decarreau, A., 1999 Interpretation of the infrared NH4 + spectrum of the NH4 +-clays: Application to the evaluation of the layer-charge Clay Minerals 34 543549 10.1180/000985599546433.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray powder diffraction—II. Nature and proportion of defects in natural kaolinites Clays and Clay Minerals 25 436450 10.1346/CCMN.1977.0250610.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. and Snyder, R., 1988 The Hinckley index for kaolinites Clay Minerals 23 249260 10.1180/claymin.1988.023.3.02.CrossRefGoogle Scholar
Plançon, A. and Giese, R.F. Jr. Snyder, R. Drits, V.A. and Bookin, A.S., 1989 Stacking faults in the kaolin-group minerals: Defect structures of kaolinite Clays and Clay Minerals 37 203210 10.1346/CCMN.1989.0370302.CrossRefGoogle Scholar
Prost, R. Damême, A. Huard, E. Driard, J., Schultz, L.G. Olphen, H. v. and Mumpton, F.A., 1987 Infrared study of structural OH in kaolinite, dickite and nacrite at 300 to 5K Proceedings of the International Clay Conference, Denver, 1985 Bloomington, Indiana The Clay Minerals Society 1723.Google Scholar
Rayner, J.H., 1962 An examination of the rate of formation of kaolinite from co-precipitated silica gel Genèse et Synthèse des Argiles 105 123127.Google Scholar
Rouxhet, P.G. Samudacheata, N. Jacogs, H. and Anton, O., 1977 Attribution of the OH stretching bands of kaolinite Clay Minerals 12 171179 10.1180/claymin.1977.012.02.07.CrossRefGoogle Scholar
Satokawa, S. Osaki, Y. Samejima, S. Miyawaki, R. Tomura, S. Shibasaki, Y. and Sugahara, Y., 1994 Effects of the structure of silica-alumina gel on the hydrothermal synthesis of kaolinite Clays and Clay Minerals 42 288297 10.1346/CCMN.1994.0420307.CrossRefGoogle Scholar
Satokawa, S. Miyawaki, R. Osaki, Y. Tomura, S. and Shibasaki, Y., 1996 Effects of acidity on the hydrothermal synthesis of kaolinite from silica-gel and gibbsite Clays and Clay Minerals 44 417423 10.1346/CCMN.1996.0440311.CrossRefGoogle Scholar
Stubican, V. and Roy, E., 1961 Isomorphous substitution and infrared spectra of the layer lattice silicates American Mineralogist 46 3251.Google Scholar
Tettenhorst, R. and Hofmann, D.A., 1980 Crystal chemistry of boehmite Clays and Clay Minerals 28 373380 10.1346/CCMN.1980.0280507.CrossRefGoogle Scholar
Tomura, S. Shibasaki, Y. Mizuta, H. and Kitamura, M., 1985 Growth conditions and genesis of spherical and platy kaolinite Clays and Clay Minerals 33 200206 10.1346/CCMN.1985.0330305.CrossRefGoogle Scholar
Tsuzuki, Y., 1976 Solubility diagrams for explaining zone sequences in bauxite, kaolin and pyrophyllite-diaspore deposits Clays and Clay Minerals 24 297302 10.1346/CCMN.1976.0240605.CrossRefGoogle Scholar
Van Oosterwyck-Gastuche, M.C. and La Iglesia, A., 1978 Kaolinite synthesis. II. A review and discussion of the factors influencing the rate process Clays and Clay Minerals 26 409417 10.1346/CCMN.1978.0260604.CrossRefGoogle Scholar
Vedder, W., 1965 Ammonium in muscovite Geochimica et Cosmochimica Acta 29 221228 10.1016/0016-7037(65)90019-0.CrossRefGoogle Scholar
Xie, Z. and Walther, J.V., 1992 Incongruent dissolution and surface area of kaolinite Geochimica et Cosmochimica Acta 56 33573363 10.1016/0016-7037(92)90383-T.CrossRefGoogle Scholar