Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:23:45.482Z Has data issue: false hasContentIssue false

Influence of Silicate- and Magnesium-Specific Adsorption and Particle Shape on the Rheological Behavior of Mixed Serpentine-Goethite Suspensions

Published online by Cambridge University Press:  01 January 2024

P. Tartaj*
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
A. Cerpa
Affiliation:
Facultad de Ingeniería Química, Instituto Superior Politécnico José; Antonio Echeverría, Calle 127 s/n Marianao, 19390 C. Habana, Cuba
M. T. García-González
Affiliation:
Centro de Ciencias Medioambientales de Madrid (CSIC), Serrano 115, Dpdo 28006, Madrid, Spain
C. J. Serna
Affiliation:
Instituto de Ciencia de Materiales de Madrid (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
*
*E-mail address of corresponding author: ptartaj@icmm.csic.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The influence of dissolved species and particle morphology on the electrokinetic behavior and the initial yield stress values of Cuban lateritic aqueous suspensions was studied. The lateritic samples were mixtures of serpentine and goethite in different relative proportions. The addition of silicate and Mg ionic species, which are normally found in natural waters used in industrial processes, affected the electrokinetic and flow behavior of the lateritic suspensions. Specific adsorption of these species on particle surfaces was shown by a shift of the isoelectric point and the maximum of the initial yield stress to more acidic pH (Si ionic species adsorption) and more basic pH (Mg ionic species adsorption), when compared to suspensions containing only non-adsorbing electrolytes. The initial yield-stress values determined in samples consisting entirely of goethite varied from sample to sample. A detailed crystallochemical characterization revealed that these changes were associated with the axial ratio (i.e. ratio of particle length to width) of the mineral particles. Goethite samples with larger particle size (smaller number of particles for a given solid concentration) and greater axial ratios presented initial yield-stress values greater than those goethites with smaller particle size and lower axial ratio.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Avotins, P.A. (1979) The rheology and handling of laterite slurries. Pp. 610635 in: International Lateritic Symposium, New York.Google Scholar
Avramidis, K.S. and Turian, R.M., (1991) Yield stress of lateritic suspensions Journal of Colloid and Interface Science 143 5468 10.1016/0021-9797(91)90436-C.CrossRefGoogle Scholar
Bales, R.C. and Morgan, J.J., (1985) Dissolution kinetics of chrysotile at pH 7 to 10 Geochimica et Cosmochimica Acta 49 22812288 10.1016/0016-7037(85)90228-5.CrossRefGoogle Scholar
Barrow, N.J. and Bowden, J.W., (1987) A comparison of models for describing the adsorption of anions on a variable charge mineral surface Journal of Colloid and Interface Science 119 236250 10.1016/0021-9797(87)90263-3.CrossRefGoogle Scholar
Bruun-Hansen, H.C. Raben-Lange, B. Raulund-Rasmussen, K. and Borggaard, O.K., (1994) Monosilicate adsorption by ferrihydrite and goethite at pH 3–6 Soil Science 158 4046 10.1097/00010694-199407000-00005.CrossRefGoogle Scholar
Cerpa, A. García-González, M.T. Tartaj, P. Garcell, L. and Serna, C.J., (1996) Rheological properties of concentrated lateritic suspensions Progress in Colloids and Polymer Science 100 266270 10.1007/BFb0115791.CrossRefGoogle Scholar
Cerpa, A. García-González, M.T. Tartaj, P. Garcell, L. and Serna, C.J., (1999) Mineral-content and particle-size effects on the colloidal properties of concentrated lateritic suspensions Clays and Clay Minerals 47 515521 10.1346/CCMN.1999.0470414.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., (1996) The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses Weinheim, Germany VCH 129 132.Google Scholar
Cornell, R.M. Mann, S. and Skarnulis, J., (1983) A high-resolution microscopy examination of domain boundaries in crystals of synthetic goethite Journal of Chemical Society, Faraday Transactions 79 26792684 10.1039/f19837902679.CrossRefGoogle Scholar
Hingston, F.J. Posner, A.M. and Quirk, J.P., (1972) Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes Journal of Soil Science 23 177192 10.1111/j.1365-2389.1972.tb01652.x.CrossRefGoogle Scholar
Hunter, R.J., (1981) Zeta Potential in Colloidal Science London Academic Press 229 pp.Google Scholar
Kuhnel, R.A. Roorda, H.J. and Steensma, J.J., (1975) The crystallinity of minerals — A new variable in pedogenic processes: A study of goethite and associated silicates in laterites Clays and Clay Minerals 23 349354 10.1346/CCMN.1975.0230503.CrossRefGoogle Scholar
Leong, Y.K. Scales, P.J. Healy, T.W. and Boger, D.V., (1995) Effect of particle size on colloidal zirconia rheology at the isoelectric point Journal of the American Ceramic Society 78 22092212 10.1111/j.1151-2916.1995.tb08638.x.CrossRefGoogle Scholar
Lindsay, W.L., (1979) Chemical Equilibria in Soils New York John Wiley & Sons 286 pp.Google Scholar
Luce, R.W. Bartlett, R.W. and Parks, G.A., (1972) Dissolution of magnesium silicates Geochimica et Cosmochimica Acta 36 3550 10.1016/0016-7037(72)90119-6.CrossRefGoogle Scholar
Moenke, H.W. and Farmer, V.C., (1974) Vibrational Spectra and the Crystal-Chemical Classification of Minerals Infrared Spectra of Minerals London Mineralogical Society 111118 10.1180/mono-4.7.CrossRefGoogle Scholar
Padmanabhan, E. and Mermut, A.R., (1995) The problem of expressing the specific surface areas of clay fractions Clays and Clay Minerals 43 237245 10.1346/CCMN.1995.0430211.CrossRefGoogle Scholar
Parks, G.A., (1965) The isolectric point of solid oxides, solid hydroxides and aqueous hydroxo complex systems Chemical Reviews 65 177198 10.1021/cr60234a002.CrossRefGoogle Scholar
Philipse, A.P., (1996) The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders Langmuir 12 11271133 10.1021/la950671o.CrossRefGoogle Scholar
Pugh, R.J. and Bergström, L., (1988) The uptake of Mg(II) on ultrafine α-silicon carbide and α-alumina Journal of Colloid and Interface Science 124 570580 10.1016/0021-9797(88)90193-2.CrossRefGoogle Scholar
Ramanaidou, E. Nahon, D. Decarreau, A. and Melfi, J., (1996) Hematite and goethite from duricrusts developed by lateritic chemical weathering of Precambrian banded iron formation, Minas Gerais, Brazil Clays and Clay Minerals 44 2231 10.1346/CCMN.1996.0440102.CrossRefGoogle Scholar
Schramm, G., (1994) A Practical Approach to Rheology and Rheometry Germany Karlsruhe Haake Gmbh 290 pp.Google Scholar
Schultz, L.G., (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre shale US Geological Survey Professional Papers, 391-C Washington, D.C. United States Government Printing Office C1 C31.Google Scholar
Sigg, L. and Stumm, W., (1981) The interaction of anions and weak acids with the hydrous goethite (á-FeOOH) surface Colloids and Surfaces 2 101117 10.1016/0166-6622(81)80001-7.CrossRefGoogle Scholar
Tartaj, P. Cerpa, A. García-González, M.T. and Serna, C.J., (2000) Surface instability of serpentine in aqueous suspensions Journal of Colloid and Interface Science 231 176181 10.1006/jcis.2000.7109.CrossRefGoogle ScholarPubMed
Vera, A., (1979) Introducción a los yacimientos de niquel cubanos La Habana, Cuba Orbe 13 15.Google Scholar
Wong, P.T.T. Baudais, F.L. and Moffat, D.J., (1986) Hydrostatic pressure effects on TO–LO splitting and softening of infrared active phonons in α-quartz Journal of Chemical Physics 84 671674 10.1063/1.450563.CrossRefGoogle Scholar