Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T18:51:03.287Z Has data issue: false hasContentIssue false

Identification of Tetramethylammonium Ion in Methylated NH4-Bentonite

Published online by Cambridge University Press:  01 July 2024

M. A. Franco
Affiliation:
Istituto di Chimica Analitica, Università di Sassari.
C. Gessa
Affiliation:
Istituto di Chimica Agraria, Università di Sassari.
F. Cariati
Affiliation:
Istituto di Chimica Inorganica, Università di Sassari.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Treating NH4-bentonite with diazomethane results in methylation of adsorbed ammonium with the formation of the tetramethylammonium ion. This ion, which can be completely removed through ion exchange, is distinguished in the IR spectrum by a strong band at 1480 cm−1 due to CH3 group bending vibrations. X-ray diffractograms, CEC, and surface area of the clay are not modified by treatment with diazomethane.

Резюме

Резюме

Обработка бентонита,содержащего H4, диазометаном определяет метили- зацию адсорбированного аммония с образованием иона тетраметиламмония.Этот ион,который может быть полностью удален путем ионного обмена,определяется в инфракрасном спектре интенсивной полосой на 1480 см-1 благодаря искривляющим колебаниям группы СН3.

Дифрактограммы рентгеновских лучей,катионная обменная способность и площадь поверхности глины не изменились в результате обработки ее диазометаном.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Berger, G. (1941) The structure of montmorillonite: preliminary communication on the ability of clay minerals to be methylated: Chem. Weekblad 38, 4243.Google Scholar
Bower, C. A. and Goertzen, J. O. (1959) Surface area of soils and clays by an equilibrium ethylene glycol method: Soil Sci. 87, 289292.CrossRefGoogle Scholar
Brown, G., Green-Kelly, R. and Norrish, K. (1952) Organic derivates of montmorillonite: Clay Miner. Bull. 1, 214220.CrossRefGoogle Scholar
Deuel, H. (1957) Organische Derivate von Tonmineralien: Agrochimica 1, 248267.Google Scholar
Ebsworth, E. A. V. and Sheppard, N. (1959) The infra-red spectra of some methylammonium iodides: angle deformation frequencies of N̽ and N̽H2 groups: Spectrochim, Acta 13, 261270.CrossRefGoogle Scholar
Eistert, B., Regitz, M., Heck, G. and Schwall, H. (1968) Umsetzung von diazoalkanen mit Ammoniak, Aminen und Ammoniumsalzen: Houben-Weyl Methoden der Organishen Chemie, Vol. 10/4, 680.Google Scholar
Eschena, T. and Solinas, V. (1968) La titolazione potenziometrica delle argille insature in assenza di elettroliti: Studi Sassar. XVI, 181189.Google Scholar
Fripiat, J. J., Gastuche, M. C. and Vancopernolle, G. (1954) Les groupes hydroxyles de surface de la kaolinite et sa capacité d'échange ionique: 5th Int. Congr. Soil Sci., Léopoldville 2, 401422.Google Scholar
Gessa, C. (1973) Interrelationships of a third buffer range with pH-dependent and permanent charges in bentonite: Geoderma 10, 299306.CrossRefGoogle Scholar
Gessa, C. and Franco, M. A. (1974) Caratterizzazione dell' H-bentonite metilata con diazometano: Studi Sassar. Sez. 3, 111.Google Scholar
Gessa, C., Palmieri, F. and Franco, M. A. (1976) Ionic fixation in methylated clay: Congr. Intern. Jerusalem (In press).Google Scholar
Gessa, C., Palmieri, F. and Franco, M. A. (1977) Influence of adsorbed ions on clay methylation process (In press).Google Scholar
Greenland, D. J. and Russel, E. W. (1955) Organo clay derivates and the origin of the negative charge on clay particles: Trans. Faraday Soc. 51, 13001307.CrossRefGoogle Scholar
Harward, M. E. and Coleman, N. T. (1954) Some properties of H-Al-clays and exchange resins: Soil Sci. 78, 181188.CrossRefGoogle Scholar
Martin-Vivaldi, J. L. and Del Pino Vazquez, C. (1956) Study of the surface of silicates with a laminar structure by methylation with diazomethane. I. Minerals of the kaolin group: Trabajos Reunión Intern. Reactividad Solidos 3, Madrid 2, 459479.Google Scholar
Nakamoto, K. (1970) Infrared Spectra of Inorganic and Coordination Compounds: John Wiley, New York.Google Scholar
Pietracaprina, A., Novelli, G. and Rinaldi, A. (1972) Bentonite deposit at Uri, Sardinia, Italy: Clay Miner. 9, 351355.CrossRefGoogle Scholar
Pietracaprina, A., Novelli, G. and Rinaldi, A. (1969) Il giacimento bentonitico di “Pedra de Fogu” (Sardegna): Mem. Soc. Geol. Ital. 8, 205218.Google Scholar
Sawhney, B. L. and Frink, C. R. (1966) Potentiometric titration of acid montmorillonite: Soil Sci. Soc. Am. Proc. 30, 181184.CrossRefGoogle Scholar
Schwertmann, U. and Jackson, M. L. (1963) Hydrogen aluminum clays: a third buffer range appearing in potentiometric titration: Science 139, 10521053.CrossRefGoogle Scholar
Schwertmann, U. and Jackson, M. L. (1964) Influence of hydroxy aluminum ions on pH titration curves of hydronium-aluminum clays: Soil Sci. Soc. Am. Proc. 38, 179183.CrossRefGoogle Scholar