Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T04:47:12.276Z Has data issue: false hasContentIssue false

Identification of Neoformed Ni-Phyllosilicates Upon Ni Uptake in Montmorillonite: A transmission Electron Microscopy and Extended X-ray Absorption Fine Structure Study

Published online by Cambridge University Press:  01 January 2024

Rainer Dähn*
Affiliation:
Laboratory for Waste Management, Paul Scherrer Institut, Villigen, CH-5232, Switzerland
Michel Jullien
Affiliation:
Commissariat à l’Energie Atomique, CEA-Cadarache, DEN/DTN/SMTM/LMTE F-13108 St Paul lez Durance Cedex, France
André M. Scheidegger
Affiliation:
Laboratory for Waste Management, Paul Scherrer Institut, Villigen, CH-5232, Switzerland
Christophe Poinssot
Affiliation:
Commissariat à l’Energie Atomique, CEA-Saclay, DEN/DPC/SCPA/LCRE, F-91191 Gif-sur-Yvette Cedex, France
Bart Baeyens
Affiliation:
Laboratory for Waste Management, Paul Scherrer Institut, Villigen, CH-5232, Switzerland
Michael H. Bradbury
Affiliation:
Laboratory for Waste Management, Paul Scherrer Institut, Villigen, CH-5232, Switzerland
*
*E-mail address of corresponding author: rainer.daehn@psi.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this work was to investigate whether neoformed Ni-phyllosilicates can be observed and identified using transmission electron microscopy (TEM) in combination with energy dispersive spectroscopy (EDS). The investigations focused on Ni-phyllosilicates formed from Ni-doped montmorillonite. The reaction conditions (pH 8, [Ni]initial = 660 and 3300 µM, 0.2 M Ca(NO3)2) employed were similar to those used in previous polarized extended X-ray absorption fine structure (P-EXAFS) investigations of neoformed Ni-phyllosilicates in a Ni-montmorillonite system.

The TEM investigations of Ni-doped montmorillonite revealed the presence of small, thin particles consisting of coherent stacks that yielded only three to five lattice fringes with spacings consistent with smectites. These small particles were neoformed phyllosilicates, based on the fact that the small particles were only observed in Ni-doped samples and their Ni content, as determined from EDS analysis, was high (up to 10 wt.% NiO). Furthermore, the particles did not possess the characteristic properties of montmorillonite particles, such as a 2:1 Si to Al ratio; instead these particles were rich in Si (up to 75 wt.% SiO2). Unlike montmorillonite, these particles did not contain any Fe. The particles were also significantly more resistant to electron beam damage than montmorillonite particles, and EXAFS measurements confirmed the presence of neoformed Ni-phyllosilicates.

The TEM study further indicates the presence of a variety of additional minerals (e.g. cristobalite, halloysite) and an X-ray amorphous Si-rich phase. A Ni signal could only be detected in the latter phase at high Ni loadings (403 µmol/g), suggesting that Ni uptake at low metal loadings (<90 µmol/g) is mainly controlled by the neoformation of phyllosilicates.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Allen, F.M. and Buseck, P.R., (1992) Minerals definition by HRTEM: Problems and opportunities Minerals and Reactions at the Atomic Scale: Transmission Electron Spectroscopy Washington, D.C Mineralogical Society of America 289333 10.1515/9781501509735-012.CrossRefGoogle Scholar
Baeyens, B. and Bradbury, M.H., (1995) A quantitative mechanistic description of Ni, Zn and Ca sorption on Na montmorillonite. Part I: Physico-chemical characterisation and titration measurements Wettingen, Switzerland Nagra.Google Scholar
Baeyens, B. and Bradbury, M.H., (1997) A mechanistic description of Ni and Zn sorption on Na-montmorillonite. Part I: Titration and sorption measurements Journal of Contaminant Hydrology 27 199222 10.1016/S0169-7722(97)00008-9.CrossRefGoogle Scholar
Buseck, P.R. Self, P. and Buseck, P.R., (1992) Electron energy-loss spectroscopy (EELS) and electron channeling (ALCHEMI) Minerals and Reactions at the Atomic Scale: Transmission Electron Spectroscopy Washington, D.C Mineralogical Society of America 289333 10.1515/9781501509735.CrossRefGoogle Scholar
Charlet, L. and Manceau, A., (1994) Evidence for the neoformation of clays upon sorption of Co(II) and Ni(II) on silicates Geochimica et Cosmochimica Acta 58 25772582 10.1016/0016-7037(94)90034-5.CrossRefGoogle Scholar
Dähn, R. Scheidegger, A.M. Manceau, A. Schlegel, M.L. Baeyens, B. Bradbury, M.H. and Morales, M., (2002) Neoformation of Ni phyllosilicate upon Ni uptake on montmorillonite: A kinetics study by powder and polarized extended X-ray absorption fine structure spectroscopy Geochimica et Cosmochimica Acta 66 23352347 10.1016/S0016-7037(02)00842-6.CrossRefGoogle Scholar
Dong, H. and Peacor, D.R., (1996) TEM observations of coherent stacking relations in smectite, I/S and illite of shales: Evidence for MacEwan crystallites and dominance of 2M 1 polytypism Clays and Clay Minerals 44 257275 10.1346/CCMN.1996.0440211.CrossRefGoogle Scholar
Jackson, M.L. Clayton, R.N. Fuji, N. and Henderson, J.H., (1977) Cristobalite morphology and oxygen isotopic composition variation under hydrothermal alteration Clays and Clay Minerals 25 3138 10.1346/CCMN.1977.0250106.CrossRefGoogle Scholar
Kirkman, J.H., (1981) Morphology and structure of halloysite in New Zealand tephras Clays and Clay Minerals 29 19 10.1346/CCMN.1981.0290101.CrossRefGoogle Scholar
Kraehenbuehl, F. Stoeckli, H.F. Brunner, F. Kahr, G. and Mueller-Vonmoos, M., (1987) Study of the water-bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques: 1. Micropore volumes and internal surface areas, following Dubinin’s theory Clay Minerals 22 19 10.1180/claymin.1987.022.1.01.CrossRefGoogle Scholar
Lee, S. Anderson, P.R. Bunker, B.A. and Karanfil, C., (2004) EXAFS study of Zn sorption mechanisms on montmorillonite Environmental Science and Technology 38 54265432 10.1021/es0350076.CrossRefGoogle ScholarPubMed
Manceau, A., (1990) Distribution of cations among the octahedra of phyllosilicates: Insight from EXAFS The Canadian Mineralogist 28 321328.Google Scholar
Manceau, A. and Calas, G., (1986) Nickel-bearing clay minerals: II. Intracrystalline distribution of nickel: an X-ray absorption study Clay Minerals 21 341360 10.1180/claymin.1986.021.3.07.CrossRefGoogle Scholar
Manceau, A. Schlegel, M.L. Nagy, K.L. and Charlet, L., (1999) Evidence for the formation of trioctahedral clay upon sorption of Co2+ on quartz Journal of Colloid and Interface Science 220 181197 10.1006/jcis.1999.6547.CrossRefGoogle ScholarPubMed
Mansour, A.N. and Melendres, C.A., (1998) Analysis of X-ray absorption spectra of some nickel oxycompounds using theoretical standards Journal of Physical Chemistry A 102 6581 10.1021/jp9619853.CrossRefGoogle Scholar
Meike, A. (1989) Transmission electron microscope study of illite/smectite mixed layers. NAGRA Technical Report, 89–03.Google Scholar
Mitra, G.B. and Bhattacherjee, S., (1975) The structure of halloysite Acta Crystallographica B31 28512857 10.1107/S0567740875009041.CrossRefGoogle Scholar
Morton, J.D. Semrau, J.D. and Hayes, K.F., (2001) An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay Geochimica et Cosmochimica Acta 65 27092722 10.1016/S0016-7037(01)00633-0.CrossRefGoogle Scholar
Pandya, K.I. O’Grady, W.E. Corrigan, D.A. McBreen, J. and Hoffman, R.W., (1990) Extended X-ray absorption fine structure investigation of nickel hydroxides The Journal of Physical Chemistry 94 2126 10.1021/j100364a005.CrossRefGoogle Scholar
Peacor, D.R. and Buseck, P.R., (1992) Diagenesis and low grade metamorphism of shales and slates Minerals and Reactions at the Atomic Scale: Transmission Electron Spectroscopy Washington, D.C Mineralogical Society of America 335380 10.1515/9781501509735-013.CrossRefGoogle Scholar
Perdikatsis, B. and Burzlaff, H., (1981) Strukturverfeinerung am Talk Mg3[(OH)2Si4O10] Zeitschrift für Kristallographie 156 177186.Google Scholar
Rehr, J.J. Mustre de Leon, J. Zabinsky, S. and Albers, R.C., (1991) Theoretical X-ray absorption fine structure standards Journal of the American Chemical Society 113 51355140 10.1021/ja00014a001.CrossRefGoogle Scholar
Ressler, T., (1998) WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows Journal of Synchrotron Radiation 5 118122 10.1107/S0909049597019298.CrossRefGoogle ScholarPubMed
Scheidegger, A.M. Lamble, G.M. and Sparks, D.L., (1996) Investigations of Ni adsorption on pyrophyllite Environmental Science and Technology 30 548554 10.1021/es950293+.CrossRefGoogle Scholar
Scheidegger, A.M. Fendorf, M. and Sparks, D.L., (1996) Mechanisms of nickel sorption on pyrophyllite: Macroscopic and microscopic approaches Soil Science Society of America Journal 60 17631777 10.2136/sssaj1996.03615995006000060022x.CrossRefGoogle Scholar
Scheidegger, A.M. Lamble, G.M. and Sparks, D.L., (1997) Spectroscopic evidence for the formation of mixed-cation hydroxide phases upon metal sorption on clays and aluminum oxides Journal of Colloid and Interface Science 186 118128 10.1006/jcis.1996.4624.CrossRefGoogle Scholar
Scheidegger, A.M. Strawn, D.G. Lamble, G.M. and Sparks, D.L., (1998) The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: A time-resolved XAFS study Geochimica et Cosmochimica Acta 62 22332245 10.1016/S0016-7037(98)00136-7.CrossRefGoogle Scholar
Scheinost, A.C. Ford, R.G. and Sparks, D.L., (1999) The role of Al in the formation of secondary Ni precipitates on pyrophyllite, gibbsite, talc, and amorphous silica: A DRS study Geochimica et Cosmochimica Acta 63 31933203 10.1016/S0016-7037(99)00244-6.CrossRefGoogle Scholar
Schlegel, M.L. Manceau, A. Charlet, L. Chateigner, D. and Hazemann, J.L., (2001) Sorption of metal ions on clay minerals. 3. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite Geochimica el Cosmochimica Acta 65 41554170 10.1016/S0016-7037(01)00700-1.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H., (2001) Strunz Mineralogical Tables Stuttgart, Germany Schweitzerbart’sche.Google Scholar
Thompson, H.A. Parks, G.A. Brown, G.E. Jr., (1999) Ambient-temperature synthesis, evolution, and characterization of cobalt-aluminum hydrotalcite-like solids Clays and Clay Minerals 47 425438 10.1346/CCMN.1999.0470405.CrossRefGoogle Scholar
Thompson, H.A. Parks, G.A. Brown, G.E. Jr., (1999) Dynamic interactions of dissolution, surface adsorption, and precipitation in an aging cobalt(II)-clay-water system Geochimica et Cosmochimica Acta 63 17671779 10.1016/S0016-7037(99)00125-8.CrossRefGoogle Scholar
Towle, S.N. Bargar, J.R. Brown, G.E. Jr. and Parks, G.A., (1997) Surface precipitations of Co(II) on Al2O3 Journal of Colloid and Interface Science 187 6282 10.1006/jcis.1996.4539.CrossRefGoogle ScholarPubMed
Van Olphen, H. and Fripiat, J.J., (1979) Data Handbook for Clay Materials and Other Non-metallic Minerals New York Pergamon Press.Google Scholar
Yamaguchi, N.U. Scheinost, A.C. and Sparks, D.L., (2001) Surface-induced nickel hydroxide precipitation in the presence of citrate and salicylate Soil Science Society of America Journal 65 729736 10.2136/sssaj2001.653729x.CrossRefGoogle Scholar