Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T04:41:08.196Z Has data issue: false hasContentIssue false

Hydrolysis of Azinphosmethyl Induced by the Surface of Smectites

Published online by Cambridge University Press:  02 April 2024

M. Sánchez-Camazano
Affiliation:
Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Apdo. 257, 37071 Salamanca, Spain
M. J. Sánchez-Martín
Affiliation:
Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Apdo. 257, 37071 Salamanca, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of layer charge and of the interlayer cations of smectites on the hydrolysis of azinphosmethyl (0,0-dimethyl S-((4-oxo-l,2,3-benzotriazine-3(4H)-yl)methyl) phosphorodithioate) in an aqueous medium was investigated. Ultraviolet spectroscopy was used for monitoring the hydrolysis process. Hydrolysis of the pesticide is catalyzed by Ca-hectorite (layer charge 0.216) but is not catalyzed by Ca-nontronite nor by Ca-montmorillonites with a layer charge above 0.216. The Mg- and Cu-hectorites and Cu-montmorillonite with a layer charge of 0.264 also show catalytic activity. The catalytic activities of the Ca2+ and Cu2+ cations as exchange cations of the smectite and as salts are compared. In agreement with previously reported work, the results show that the hydrolysis of azinphosmethyl may involve the adsorption of the pesticide into the interlayer space of the smectites, forming a bidentate complex with the interlayer cations. This interaction must enhance the electrophilic nature of the phosphorus atom, thereby facilitating its nucleophilic attack by the OH-ion and producing rupture of the P-S bond.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

American Petroleum Institute, 1950 Research Project 49. Clay Minerals Standard: Preliminary Reports 1–8 New York Columbia University.Google Scholar
Eto, M., 1974 Organophosphorus Pesticides: Organic and Biological Chemistry Cleveland, Ohio CRC Press, Inc. 57121.Google Scholar
González-García, F. and González-García, S., 1953 Modificaciones producidas por tratamiento térmico en las propiedades fisicoquimicas de los silicatos de la série isomorfa montmorillonita-beidellita An. Edafol. Agrobiol. 12 925992.Google Scholar
Gutiérrez-Ríos, E. and González-García, F., 1949 Génesis de la Montmorillonita de Marruecos español An. Edafol. Agrobiol. 8 537547.Google Scholar
Hance, R. J., 1970 Influence of sorption on the decomposition ofpesticides. Sorption and transport processes in soils. SCI monograph 37 New York Academic Press 92107.Google Scholar
Konrad, J. G. and Chester, G., 1969 Degradation in soils of ciodrin, an organophosphate insecticide J. Agric. Food Chem. 17 226230.CrossRefGoogle Scholar
Konrad, J. G., Armstrong, D. E. and Chester, G., 1967 Soil degradation of diazinon, a phosphorothioate insecticide Agron. J. 59 591594.CrossRefGoogle Scholar
Konrad, J. G., Chester, G. and Armstrong, D. E., 1969 Soil degradation of malathion, a phosphorodithioate insecticide Soil. Sci. Soc. Am. Proc. 33 259262.CrossRefGoogle Scholar
Melnikov, N. N., 1971 Chemistry of pesticides Res. Rev. 36 371372.Google ScholarPubMed
Mingelgrin, U., Saltzman, S. and Yaron, B., 1977 A possible model for the surface-induced hydrolysis of organophosphorus pesticides on kaolinite clays Soil Sci. Soc. Am. Proc. 41 519523.CrossRefGoogle Scholar
Mortland, M. M., 1970 Clay organic-complex and interactions Adv. Agron. 22 75117.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. V., 1967 Catalytic hydrolysis of some organic phosphate pesticides by copper (II) J. Agric. Food Chem. 15 163167.CrossRefGoogle Scholar
Pusino, A., Gessa, C. and Kozlowski, H., 1988 Catalytic hydrolysis of quinalphos on homoionic clays Pestic. Sci. 24 18.CrossRefGoogle Scholar
Saltzman, S., Mingelgrin, U. and Yaron, B., 1976 Role of water in the hydrolysis of parathion and methylparathion on kaolinite J. Agric. Food Chem. 24 739743.CrossRefGoogle Scholar
Sánchez-Camazano, M. and Sánchez-Martín, M. J., 1983 Montmorillonite-catalyzed hydrolysis of phosmet Soil Sci. 136 8993.CrossRefGoogle Scholar
Sánchez-Martín, M. J. and Sánchez-Camazano, M., 1984 Aspects of the adsorption of azinphosmethyl by smectites J. Agric. Food Chem. 32 720725.CrossRefGoogle Scholar
Setton, R., 1986 Chemical Reactions in Organic and Inorganic Constrained Systems Netherlands Reidel Publishing Company.CrossRefGoogle Scholar
Theng, B. K. J., 1974 The Chemistry of Clay-Organic Reactions New York Wiley 26281.Google Scholar
Worthing, C. R. and Walker, S. B., 1987 The Pesticide Manual. A World Compendium Lavenham, England The La venham Press Ltd. 4142.Google Scholar