Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T10:07:31.511Z Has data issue: false hasContentIssue false

High-Resolution Transmission Electron Microscopy Study of Newly Formed Sediments in the Atlantis II Deep, Red Sea

Published online by Cambridge University Press:  28 February 2024

Nurit Taitel-Goldman*
Affiliation:
The Open University, P.O. Box 39328 Tel-Aviv, Israel The Seagram Center for Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
Arieh Singer
Affiliation:
The Seagram Center for Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
*
E-mail of corresponding author: nuritg@oumail.openu.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Iron and silicon in various proportions are the major components of the newly formed hydrothermal sediments in the Atlantis II Deep, Red Sea. Iron-rich 2:1 phyllosilicates with morphologies varying from ribbons to plates represent clays in initial formation stage. Well-crystallized goethite particles contain domains of hundreds of nanometers in length with the rare presence of dislocations. Molar compositions show ratios of Si/Fe = 0.12 and Al/Fe = 0.05. Euhedral feroxyhyte with curled edges forms clusters with the goethite. The feroxyhyte has ratios of Si/Fe = 0.3 and are the major Si-associated iron oxides. Two nanometer-size phases showing short range periodity are common in the newly formed Atlantis II sediments: (1) hematite with traces of Si and (2) ferrihydrite with Si/Fe molar ratios varying between 0.17–0.89. The ferrihydrite forms large clusters. Hematite appears also as well-crystallized large crystals. Feroxyhyte probably forms at the transition zone between Red Sea Deep Water and the upper convective layer in the brine, whereas goethite and ferrihydrite form in the upper convective layer. The two forms of hematite represent two stages of recrystallization, which occur within the brine.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Alt, J.C., 1988 Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific Marine Geology 81 227239 10.1016/0025-3227(88)90029-1.CrossRefGoogle Scholar
Anschutz, P. and Blanc, G., 1995 Geochemical dynamics of the Atlantis II Deep. (Red Sea): Silica behavior Marine Geology 128 2536 10.1016/0025-3227(95)00085-D.CrossRefGoogle Scholar
Badaut, D. Besson, G. Decarreau, A. and Rauttureau, R., 1985 Occurrence of a ferrous, trioctahedral smectite in recent sediments of Atlantis II Deep, Red Sea Clay Minerals 20 389404 10.1180/claymin.1985.020.3.09.CrossRefGoogle Scholar
Bäcker, V.H. and Richter, H., 1973 Die rezente hydrothermal-sedimentaire Lagerstatte Atlantis II Tief im Roten Meer Geologische Rundschau 62 697741 10.1007/BF01820957.CrossRefGoogle Scholar
Bischoff, J.L., Degens, E.T. and Ross, D.A., 1969 Red Sea geothermal brine deposits, their mineralogy, chemistry and genesis. I Hot Brines and Recent Heavy Metal Deposits in the Red Sea, Geochemical and Geophysical Account Berlin Springer-Verlag 368401 10.1007/978-3-662-28603-6_37.CrossRefGoogle Scholar
Bischoff, J.L., Degens, E.T. and Ross, D.A., 1969 Goethite-hematite stability relations with relevance to sea water and Red Sea brine system. I Hot Brines and Recent Heavy Metal Deposits in the Red Sea, Geochemical and Geophysical Account Berlin Springer-Verlag 402406 10.1007/978-3-662-28603-6_38.CrossRefGoogle Scholar
Bischoff, J.L., 1972 A ferroan nontronite from the Red Sea geothermal system Clays and Clay Minerals 20 217223 10.1346/CCMN.1972.0200406.CrossRefGoogle Scholar
Brewer, P.G. Spencer, D.W., Degens, E.T. and Ross, D.A., 1969 A note on the chemical composition of the Red Sea brines. I Hot Brines and Recent Heavy Metal Deposits in the Red Sea, Geochemical and Geophysical Account Berlin Springer-Verlag 174179 10.1007/978-3-662-28603-6_19.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., 1980 Order-disorder in clay minerals structures. I Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society Monograph No. 5 125195.CrossRefGoogle Scholar
Butuzova, G.Y.u. Drits, V.A. Morozov, A.A. and Gorschkov, A.I., 1990 Processes of formation of iron manganese oxyhydroxides in the Atlantis II and Thetis Deeps of the Red Sea Special Publications of the International Association of Sedimentology 11 5772.Google Scholar
Chukhrov, F.V. Zvyagin, B.B. Gorshkov, A.I. and Sivtsov, A.V., 1976 Mineralogical criteria in the origin of marine iron-manganese nodules Mineralium Deposita 11 2432 10.1007/BF00203092.CrossRefGoogle Scholar
Chukhrov, F.V. Zvyagin, B.B. Gorshkov, A.I. Yermilova, L.P. Korovushkin, V.V. Rudnitskaya, Y.e.S. and Yakubovskaya, N.Y.u., 1977 Feroxyhyte, a new modification of FeOOH International Geological Review 19 873890 10.1080/00206817709471086.CrossRefGoogle Scholar
Cole, T.G., 1983 Oxygen isotope geochemistry and origin of smectites in the Atlantis II Deep, Red Sea Earth and Planetary Science Letters 66 166176 10.1016/0012-821X(83)90134-6.CrossRefGoogle Scholar
Cole, T.G., 1985 Composition, oxygen isotope geochemistry and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific Geochimica et Cosmochimica Acta 49 221235 10.1016/0016-7037(85)90206-6.CrossRefGoogle Scholar
Cole, T.G., 1988 The nature and origin of smectite in the Atlantis II Deep, Red Sea Canadian Mineralogist 26 755763.Google Scholar
Cole, T.G. and Shaw, H.F., 1983 The nature and origin of authigenic smectites in some recent marine sediments Clay Minerals 18 239252 10.1180/claymin.1983.018.3.02.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides, Structure, Properties, Reactions Occurrence and Uses. New York VCH Weinheim.Google Scholar
Danielsson, L.G. Dyrssen, D. and Graneli, A., 1980 Chemical investigation of Atlantis II and Discovery brines in the Red Sea Geochimica et Cosmochimica Acta 44 20512065 10.1016/0016-7037(80)90203-3.CrossRefGoogle Scholar
Decarreau, A. and Bonnin, D., 1986 Synthesis and crystallogenesis at low temperature of Fe(III)-smectite by evolution of coprecipitated gels: Experiments in partially reducing conditions Clay Minerals 21 861877 10.1180/claymin.1986.021.5.02.CrossRefGoogle Scholar
Decarreau, A. Bonnin, D. Badaut-Trauth, D. Couty, R. and Kaiser, P., 1987 Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions Clay Minerals 22 207223 10.1180/claymin.1987.022.2.09.CrossRefGoogle Scholar
Decarreau, A. Badaut, D. and Blanc, G., 1990 Origin and temperature formation of Fe rich clays from Atlantis II Deep deposits (Red Sea). An oxygen isotopic geochemistry approach Geochemistry of Earth Surface and Mineral Formation, 2nd International Symposium, Aix en Provence France 363364.CrossRefGoogle Scholar
Farmer, V.C. McHardy, W.J. Elsass, E. and Robert, M., 1994 hk-ordering in aluminous nontronite and saponite synthesized near 90°C; Effects of synthesis conditions on nontronite composition and ordering Clays and Clay Minerals 42 180186 10.1346/CCMN.1994.0420208.CrossRefGoogle Scholar
Feely, R.A. Gendron, J.E. Baker, E.T. and Lebon, G.T., 1994 Hydrothermal plumes along the East Pacific Rise, 8°40′ to 11°50′N: Particle distribution and composition Earth and Planetary Science Letters 128 1936 10.1016/0012-821X(94)90023-X.CrossRefGoogle Scholar
Harder, H. (1976) Nontronite synthesis at low temperature. Chemical Geology, 18, 169180.CrossRefGoogle Scholar
Harder, H., 1978 Synthesis of iron layer silicate minerals under natural conditions Clays and Clay Minerals 26 6572 10.1346/CCMN.1978.0260108.CrossRefGoogle Scholar
Hartmann, M., 1985 Atlantis II Deep geothermal brine system. Chemical processes between hydrothermal brines and Red Sea deep water Marine Geology 64 157177 10.1016/0025-3227(85)90166-5.CrossRefGoogle Scholar
Hartmann, M. Scholten, J.C. Stoffers, P. and Wehner, E., 1998 Hydrographie structure of brine filled deeps in the Red Sea—new results from Shaban, Kerbit, Atlantis II and Discovery Deep Marine Geology 144 311330 10.1016/S0025-3227(97)00055-8.CrossRefGoogle Scholar
Hartmann, M. Scholten, J.C. and Stoffers, P., 1998 Hydrographic structure of brine filled deeps in the Red Sea: Correction of Atlantis II Deep temperatures Marine Geology 144 331332 10.1016/S0025-3227(97)00126-6.CrossRefGoogle Scholar
Holm, N.G. Wadsten, T. and Dowler, M.J., 1982 ß-FeOOH (akaganeite) in the Red Sea Estudios Geológicos 38 367371.Google Scholar
Holm, N.G. Dowler, M.J. Wadsten, T. and Arrhenius, G., 1983 ß-FeOO⊙Cln (akaganeite) and Fe1-xO (wüstite) in hot brine from the Atlantis II Deep (Red Sea) and the uptake of amino acids by synthetic ß-FeOO⊙Cln Geochimica et Cosmochimica Acta 47 14631470 10.1016/0016-7037(83)90305-8.CrossRefGoogle Scholar
Knedler, K.E., 1985 A geochemical and 57Fe Mossbauer investigation of East Pacific Rise and the Red Sea metalliferous sediments and other selected marine sedimentary deposits New Zealand Victoria University of Wellington.Google Scholar
McMurtry, G.M. Wang, C.H. and Yeh, H.W., 1983 Chemical and isotopic investigation into the origin of clay minerals from the Galapagos hydrothermal mounds field Geochimica et Cosmochimica Acta 47 475489 10.1016/0016-7037(83)90270-3.CrossRefGoogle Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., 1987 The chemical constitution of clays. I Chemistry of Clays and Clay Minerals. London Mineralogical Society Monograph No. 6 1110.Google Scholar
Pottorf, R.J., 1980 Hydrothermal sediments of the Red Sea, Atlantis. II Deep—a model for massive sulfide-type ore deposits Pennsylvania Pennsylvania State University, University Park.Google Scholar
Schwertmann, U. Friedl, J. Stanjek, H. Murad, E. and Bender Koch, C., 1998 Iron oxides and smectites in sediments from the Atlantis II Deep, Red Sea European Journal of Mineralogy 10 953967 10.1127/ejm/10/5/0953.CrossRefGoogle Scholar
Singer, A. and Stoffers, P., 1987 Mineralogy of a hydrothermal sequence in a core from the Atlantis II Deep, Red Sea Clay Minerals 22 251267 10.1180/claymin.1987.022.3.01.CrossRefGoogle Scholar
Singer, A. Stoffers, P. Heller-Kallai, L. and Szafranek, D., 1984 Nontronite in a deep sea core from the South Pacific Clays and Clay Minerals 32 375383 10.1346/CCMN.1984.0320505.CrossRefGoogle Scholar
Von Damm, K.L., Humphris, S.E. Zierenberg, R.A. Mullineaux, L.S. and Thomson, R.E., 1995 Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. I Seafloor Hydrothermal Systems: Physical, Chemical Biological and Geological Interactions, Geophysical Monograph 91 222247.CrossRefGoogle Scholar