Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T04:04:54.274Z Has data issue: false hasContentIssue false

Heating Fe Oxide-Rich Soils Increases the Dissolution Rate of Metals

Published online by Cambridge University Press:  01 January 2024

Nicolas Perrier*
Affiliation:
IRD UMR 161 and CEREGE UMR 6635, BP A5, 98848 Noumea, New Caledonia UNC, BP 4477, 98847 Noumea, New Caledonia Falconbridge, 9 Rue d’Austerlitz, BP MGA 8, 98802 Noumea, New Caledonia
Robert J. Gilkes
Affiliation:
School of Earth and Geographical Sciences, UWA, 35 Stirling Highway, Crawley, WA 6009, Australia
Fabrice Colin
Affiliation:
IRD UMR 161 and CEREGE UMR 6635, BP A5, 98848 Noumea, New Caledonia
*
*E-mail address of corresponding author: nicolas.perrier@noumea.ird.nc
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evidence for fire affecting the solubility of metals in Fe oxide-rich Oxisols of the Koniambo Massif of New Caledonia is presented. Acid-dissolution studies showed that Ni, Al and Cr are substituted for Fe in the structure of the Fe oxides. Thermal dehydroxylation of goethite under oxidizing conditions led to the formation of hematite and to the migration of some of these metals towards the surface of hematite crystals as indicated by their enhanced release during the early stage of dissolution. Dehydroxylation of goethite under reducing conditions led to the formation of hematite and maghemite. Nickel and Al were released preferentially during the early stages of dissolution whereas Cr was not released preferentially and may be uniformly incorporated within maghemite and hematite crystals. These results have significance to the mineral-processing industry, to geochemical exploration and to the availability of these metals to plants growing on burnt soils.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Anand, R.R. and Gilkes, R.J., (1987) The association of maghemite and corundum in Darling Range latentes, Western Australia Australian Journal of Soil Research 35 303311 10.1071/SR9870303.CrossRefGoogle Scholar
Andersen, A.N. Braithwaite, R.W., Moffatt, I. and Webb, A., (1992) Burning for conservation of the Top End’s Savannas Conservation and Development Issues in Northern Australia Darwin, Australia North Australian Research Unit 117122.Google Scholar
Campbell, A.S. Schwertmann, U. and Campbell, P.A., (1997) Formation of cubic phases on heating ferrihydrite Clay Minerals 32 615622 10.1180/claymin.1997.032.4.11.CrossRefGoogle Scholar
Chevillotte, V., Chardon, D., Beauvais, A. and Colin, F. Long term geomorphic evolution of New Caledonia Island (Pacific SW). Terra Nova (submitted).Google Scholar
Cornell, R.M. and Giovanoli, R., (1993) Acid dissolution of hematites of different morphologies Clay Minerals 28 223232 10.1180/claymin.1993.028.2.04.CrossRefGoogle Scholar
Coventry, R.J. Taylor, R.M. and Fitzpatrick, R.W., (1983) Pedological significance of the gravels in some red and grey earths of central North Queensland Australian Journal of Soil Research 21 219241 10.1071/SR9830219.CrossRefGoogle Scholar
Fitzpatrick, R.W., Stucki, J.W. Goodman, B.A. and Schwertmann, U., (1985) Iron compounds as indicators of pedogenic processes: Examples from the southern hemisphere Iron in Soils and Clay Minerals Dordrecht, The Netherlands D. Reidel Publishing Company 351396.Google Scholar
Francombe, M.H. and Rooksby, H.P., (1959) Structure transformations effected by the dehydration of diaspore, goethite and delta ferric oxide Clay Minerals Bulletin 21 114.Google Scholar
Gerth, J., (1990) Unit-cell dimensions of pure and trace metal-associated goethites Geochimica et Cosmochimica Acta 54 363371 10.1016/0016-7037(90)90325-F.CrossRefGoogle Scholar
Grogan, K.L. Gilkes, R.J. and Lottermoser, B.G., (2003) Maghemite formation in burnt plant litter at East Trinity, North Queensland, Australia Clays and Clay Minerals 51 390396 10.1346/CCMN.2003.0510404.CrossRefGoogle Scholar
Herbillon, A. Nahon, D., Stucki, J.W. Goodman, B.A. and Schwertmann, U., (1988) Laterites and laterization processes Iron and Soils and Clay Minerals Dordrecht, The Netherlands D. Riedel Publishing Company 779797 10.1007/978-94-009-4007-9_22.CrossRefGoogle Scholar
Hixon, A.W. and Crowell, J.H., (1931) Dependence of reaction velocity upon surface and agitation Industrial Engineering Chemistry 23 923 10.1021/ie50260a018.CrossRefGoogle Scholar
Hope, G. and Pask, J., (1998) Tropical vegetation change in the late Pleistocene of New Caledonia Palaeogeography, Palaeoclimatology, Palaeoecology 142 121 10.1016/S0031-0182(97)00140-5.CrossRefGoogle Scholar
Kabai, J., (1973) Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution Acta Chimica Hungarica 78 5773.Google Scholar
Klug, H.P. and Alexander, L.E., (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York John Wiley & Sons 966 pp.Google Scholar
Lim-Nunez, R. and Gilkes, R.J. (1985) Acid dissolution of synthetic metal-containing goethites and hematites. Proceedings of the International Clay Conference, Denver, pp. 197204.Google Scholar
Llorca, S. and Monchoux, P., (1991) Supergene cobalt minerals from New Caledonia The Canadian Mineralogist 29 149161.Google Scholar
Manceau, A. Schlegel, M.L. Musso, M. Sole, V.A. Gauthier, C. Petit, P.E. and Trolard, F., (2000) Crystal chemistry of trace elements in natural and synthetic goethite Geochimica et Cosmochimica Acta 64 36433661 10.1016/S0016-7037(00)00427-0.CrossRefGoogle Scholar
Naono, H. and Fujiwara, R., (1980) Micropore formation due to decomposition of acicular microcrystals of α-FeOOH Journal of Colloid and Interface Science 73 404415 10.1016/0021-9797(80)90086-7.CrossRefGoogle Scholar
Norrish, K. and Hutton, J.T., (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples Geochimica et Cosmochimica Acta 33 431453 10.1016/0016-7037(69)90126-4.CrossRefGoogle Scholar
Novak, G.A. and Colville, A.A., (1989) A practical interactive least-squares cell-parameter program using an electronic spreadsheet and a personal computer American Mineralogist 74 488490.Google Scholar
Pedro, G., (1966) Essai sur la caractérisation géochimique des différents processus zonaux résultant de l’altération superficielle Comptes Rendus de l’Academie des Sciences, Paris 262 18281831.Google Scholar
Rendon, J.L. Cornejo, J. Dearambarri, P. and Serna, C.J., (1983) Pore structure of thermally treated goethite (α-FeOOH) Journal of Colloid and Interface Science 92 5085116 10.1016/0021-9797(83)90172-8.CrossRefGoogle Scholar
Rivers, J.M. Nyquist, J.E. Roh, Y. Terry, D.O. and Doll, W.E., (2004) Investigation into the origin of magnetic soils on the Oak Ridge Reservation, Tennessee Soil Science Society of America Journal 68 17721779 10.2136/sssaj2004.1772.CrossRefGoogle Scholar
Ruan, H.D. and Gilkes, R.J., (1995) Dehydroxylation of aluminous goethite: unit cell dimensions, crystal size and surface area Clays and Clay Minerals 43 196211 10.1346/CCMN.1995.0430207.CrossRefGoogle Scholar
Schulze, D.G., (1984) The influence of aluminum on iron oxides VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them Clays and Clay Minerals 32 3644 10.1346/CCMN.1984.0320105.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., (1984) The influence of aluminium on iron oxides X. Properties of Al-substituted goethites Clay Minerals 19 521539 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., (1987) The influence of aluminium on iron oxides XIII. Properties of goethites synthesized in 0.3 M KOH at 25°C Clay Minerals 22 8392 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwertmann, U., (1984) The influence of aluminium on iron oxides: IX. Dissolution of Al-goethites in 6 M HCl Clay Minerals 19 919 10.1180/claymin.1984.019.1.02.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J.W. Goodman, B.A. and Schwertmann, U., (1985) Occurrence and formation of iron oxides in various pedoenvironments Iron in Soils and Clay Minerals Dordrecht, The Netherlands D. Reidel Publishing Company 203308.Google Scholar
Schwertmann, U., (1991) Solubility and dissolution of iron oxides Plant and Soil 130 125 10.1007/BF00011851.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., (1991) Iron Oxides in the Laboratory. Preparation and Characterization Weinheim, Germany VCH 137 pp.Google Scholar
Schwertmann, U. and Fechter, H., (1984) The influence of aluminum on iron oxides. XI. Aluminum-substituted maghemite in soils and its formation Soil Science Society of America Journal 48 14621463 10.2136/sssaj1984.03615995004800060054x.CrossRefGoogle Scholar
Schwertmann, U. and Latham, M., (1986) Properties of iron oxides in some New Caledonian Oxisols Geoderma 39 105123 10.1016/0016-7061(86)90070-4.CrossRefGoogle Scholar
Schwertmann, U. and Pfab, G., (1994) Structural vanadium in synthetic goethite Geochimica et Cosmochimica Acta 58 43494352 10.1016/0016-7037(94)90338-7.CrossRefGoogle Scholar
Schwertmann, U. Taylor, R.M., Dixon, J.B. and Weed, S.B., (1989) Iron oxides Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America 379438.Google Scholar
Schwertmann, U. Fitzpatrick, R.W. Taylor, R.M. and Lewis, D.G., (1979) The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites Clays and Clay Minerals 27 105112 10.1346/CCMN.1979.0270205.CrossRefGoogle Scholar
Schwertmann, U. Gasser, U. and Sticher, H., (1989) Chromium-for-iron substitution in synthetic goethites Geochimica et Cosmochimica Acta 53 12931297 10.1016/0016-7037(89)90063-X.CrossRefGoogle Scholar
Sidhu, P.S. Gilkes, R.J. and Posner, A.M., (1980) The behavior of Co, Ni, Zn, Cu, Mn and Cr in magnetite during alteration to maghemite and hematite Soil Science Society of America Journal 44 135138 10.2136/sssaj1980.03615995004400010028x.CrossRefGoogle Scholar
Sidhu, P.S. Gilkes, R.J. Cornell, R.M. Posner, A.M. and Quirk, J.P., (1981) Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids Clays and Clay Minerals 29 269276 10.1346/CCMN.1981.0290404.CrossRefGoogle Scholar
Singh, B., (1991) Mineralogic and chemical characteristics of soils from South-Western Australia Perth University of Western Australia 200 pp.Google Scholar
Singh, B. and Gilkes, R.J., (1991) Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia Australian Journal of Soil Science 43 7798 10.1111/j.1365-2389.1992.tb00121.x.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., (1992) XPAS: an interactive computer program for analysis of powder X-ray diffraction patterns Powder Diffraction 7 610 10.1017/S0885715600015992.CrossRefGoogle Scholar
Singh, B. Sherman, D.M. Gilkes, R.J. Wells, M.A. and Mosselmans, J.F.W., (2000) Structural chemistry of Fe, Mn and Ni in synthetic hematites as determined by extended X-ray absorption fine structure spectroscopy Clays and Clay Minerals 48 521527 10.1346/CCMN.2000.0480504.CrossRefGoogle Scholar
Singh, B. Sherman, D.M. Gilkes, R.J. Wells, M.A. and Mosselmans, J.F.W., (2002) Incorporation of Cr, Mn and Ni into goethite: mechanism from extended X-ray absorption spectroscopy Clay Minerals 37 639649 10.1180/000985502374066.CrossRefGoogle Scholar
Taylor, R.M. and Schwertmann, U., (1974) Maghemite in soils and its origin I. Properties and observations on soil maghemites Clay Minerals 10 289298 10.1180/claymin.1974.010.4.07.CrossRefGoogle Scholar
Trescases, J.J., (1975) L’evolution géochimique supergène des roches ultrabasiques en zone tropicale Paris Mémoires ORSTOM n°78 260 pp.Google Scholar
Trolard, F. Bourrié, G. Jeanroy, E. Herbillon, A.J. and Martin, H., (1995) Trace metals in natural iron oxides from laterites: A study using selective kinetic extraction Geochimica et Cosmochimica Acta 59 12851297 10.1016/0016-7037(95)00043-Y.CrossRefGoogle Scholar
Watari, F. van Landuyt, J. Delavignette, P. and Amelinckx, S., (1983) Electron microscopic study of dehydration transformations III. High resolution observation of the reaction process FeOOH-Fe2O3 Journal of Solid State Chemistry 48 4964 10.1016/0022-4596(83)90058-0.CrossRefGoogle Scholar
Xie, J. and Dunlop, A.C., (1998) Dissolution rates of metals in Fe oxides: implications for sampling ferruginous materials with significant relict Fe oxides Journal of Geochemical Exploration 61 213232 10.1016/S0375-6742(97)00053-8.CrossRefGoogle Scholar